ترغب بنشر مسار تعليمي؟ اضغط هنا

CLIC-LHC Based FEL-Nucleus Collider: Feasibility and Physics Search Potential

51   0   0.0 ( 0 )
 نشر من قبل Saleh Sultansoy
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English
 تأليف H. Braun




اسأل ChatGPT حول البحث

The feasibility of a CLIC-LHC based FEL-nucleus collider is investigated. It is shown that the proposed scheme satisfies all requirements of an ideal photon source for the Nuclear Resonance Fluorescence method. The tunability, monochromaticity and high polarization of the FEL beam together with high statistics and huge energy of LHC nucleus beams will give an unique opportunity to determine different characteristics of excited nuclear levels. The physics potential of the proposed collider is illustrated for a beam of Pb nuclei.



قيم البحث

اقرأ أيضاً

The feasibility of a CLIC-LHC based FEL-nucleus collider is investigated. It is shown that the proposed scheme satisfies all requirements of an ideal photon source for the Nuclear Resonance Fluorescence method. The physics potential of the proposed collider is illustrated for a beam of Pb nuclei.
The Compact Linear Collider, CLIC, is a proposed e$^+$e$^-$ collider at the TeV scale whose physics potential ranges from high-precision measurements to extensive direct sensitivity to physics beyond the Standard Model. This document summarises the p hysics potential of CLIC, obtained in detailed studies, many based on full simulation of the CLIC detector. CLIC covers one order of magnitude of centre-of-mass energies from 350 GeV to 3 TeV, giving access to large event samples for a variety of SM processes, many of them for the first time in e$^+$e$^-$ collisions or for the first time at all. The high collision energy combined with the large luminosity and clean environment of the e$^+$e$^-$ collisions enables the measurement of the properties of Standard Model particles, such as the Higgs boson and the top quark, with unparalleled precision. CLIC might also discover indirect effects of very heavy new physics by probing the parameters of the Standard Model Effective Field Theory with an unprecedented level of precision. The direct and indirect reach of CLIC to physics beyond the Standard Model significantly exceeds that of the HL-LHC. This includes new particles detected in challenging non-standard signatures. With this physics programme, CLIC will decisively advance our knowledge relating to the open questions of particle physics.
70 - Hiroyuki Fujioka 2021
A hypothesis is proposed herein, suggesting that a pion-nuclear resonance may be observed in the $alpha+dto{}^6mathrm{Li}(3.563)+pi^0$ reaction. The resonance has a $pi NNalpha$ structure, containing $alpha NN$ and $pi NN$ subsystems. The former corr esponds to the $A=6$ isotriplet ($^6mathrm{He}_text{g.s.}$, $^6mathrm{Li}(3.563)$, $^6mathrm{Be}_text{g.s.}$), whereas the latter is a hypothetical $NN$-decoupled dibaryon. We propose an experiment to search for this resonance using the $^7mathrm{Li}(p,d)$ reaction.
This paper summarizes the physics potential of the CLIC high-energy e+e- linear collider. It provides input to the Snowmass 2013 process for the energy-frontier working groups on The Higgs Boson (HE1), Precision Study of Electroweak Interactions (HE2 ), Fully Understanding the Top Quark (HE3), as well as The Path Beyond the Standard Model -- New Particles, Forces, and Dimensions (HE4). It is accompanied by a paper describing the CLIC accelerator study, submitted to the Frontier Capabilities group of the Snowmass process.
157 - V. Metag , M. Nanova , 2017
Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson abs orption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on $K^+, K^0, K^-, eta, eta^prime, omega$, and $phi$ mesons are presented and compared with theoretical predictions. The interaction of $K^+$ and $K^0$ mesons with nuclei is found to be weakly repulsive, while the $K^-, eta,eta^prime, omega$ and $phi$ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the $eta$ and $eta^prime$ mesons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا