ﻻ يوجد ملخص باللغة العربية
Quadrupole amplitudes in the $gamma^{*}NtoDelta$ transition are associated with the issue of nucleon deformation. A search for these small amplitudes has been the focus of a series of measurements undertaken at Bates/MIT by the OOPS collaboration. We report on results from H$(e,e^prime p)pi^0$ data obtained at $Q^2= 0.070$ (GeV/c)$^2$ and invariant mass of W=1155 MeV using the out-of-plane detection technique with the OOPS spectrometers. The $sigma_{LT}$ and $sigma_{T}+epsiloncdot$ $sigma_{L}$ response functions were isolated. These results, along with those of previous measurements at $W$=1172 MeV and $Q^2= 0.127$ (GeV/c)$^2$, aim in elucidating the interplay between resonant and non resonant amplitudes.
The differential cross sections sigma_0=sigma_T+epsilon sigma_L, sigma_{LT}, and sigma_{TT} of pi^0 electroproduction from the proton were measured from threshold up to an additional center of mass energy of 40 MeV, at a value of the photon four-mome
First data on coherent threshold pi^0 electroproduction from the deuteron taken by the A1 Collaboration at the Mainz Microtron MAMI are presented. At a four-momentum transfer of q^2=-0.1 GeV^2/c^2 the full solid angle was covered up to a center-of-ma
The interference response function f_LT (R_LT) of the D(e,ep)n reaction has been determined at squared four-momentum transfer Q^2 = 0.33 (GeV/c)^2 and for missing momenta up to p_miss= 0.29 (GeV/c). The results have been compared to calculations that
Exclusive neutral-pion electroproduction ($epto e^prime p^prime pi^0$) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4sigma/dtdQ^2dx_Bdphi_pi$ and structure functions $sigma_T+epsilo
The reaction p(e,ep)pi^0 has been studied at Q^2=0.2 (GeV/c)^2 in the region of W=1232 MeV. From measurements left and right of q, cross section asymmetries rho_LT have been obtained in forward kinematics rho_LT(theta_pi^0=20deg) = (-11.68 +/- 2.36_s