ترغب بنشر مسار تعليمي؟ اضغط هنا

Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(alpha,gamma)19Ne

103   0   0.0 ( 0 )
 نشر من قبل Barry Davids
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 15O(alpha,gamma)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + alpha threshold. We have measured the alpha-decay branching ratios for these states using the p(21Ne,t)19Ne reaction at 43 MeV/u. Combining our measurements with previous determinations of the radiative widths of these states, we conclude that no significant breakout from the hot CNO cycle into the rp process in novae is possible via 15O(alpha,gamma)19Ne, assuming current models accurately represent their temperature and density conditions.

قيم البحث

اقرأ أيضاً

73 - F. de Oliveira 1997
A disagreement between two determinations of Gamma_alpha of the astro- physically relevant level at E_x=4.378 MeV in 19F has been stated in two recent papers by Wilmes et al. and de Oliveira et al. In this work the uncertainties of both papers are di scussed in detail, and we adopt the value Gamma_alpha=(1.5^{+1.5}_{-0.8})10^-9eV for the 4.378 MeV state. In addition, the validity and the uncertainties of the usual approximations for mirror nuclei Gamma_gamma(19F) approx Gamma_gamma(19Ne), theta^2_alpha(19F) approx theta^2_alpha(19Ne) are discussed, together with the resulting uncertainties on the resonance strengths in 19Ne and on the 15O(alpha,gamma)19Ne rate.
The most intense gamma-ray line observable from novae is likely to be from positron annihilation associated with the decay of 18F. The uncertainty in the destruction rate of this nucleus through the 18F(p,{alpha})15O reaction presents a limit to inte rpretation of any future observed gamma-ray flux. Direct measurements of the cross section of both this reaction and the 18F(p,p)18F reaction have been performed between center of mass energies of 0.5 and 1.9 MeV. Simultaneous fits to both data sets with the R-Matrix formalism reveal several resonances, with the inferred parameters of populated states in 19Ne in general agreement with previous measurements. Of particular interest, extra strength has been observed above ECM sim1.3 MeV in the 18F(p,p)18F reaction and between 1.3-1.7 MeV in the 18F(p,{alpha})15O reaction. This is well described by a broad 1/2+ state, consistent with both a recent theoretical prediction and an inelastic scattering measurement. The astrophysical implications of a broad sub-threshold partner to this state are discussed.
The 15O(alpha,gamma)19Ne reaction plays a role in the ignition of Type I x-ray bursts on accreting neutron stars. The lifetimes of states in 19Ne above the 15O + alpha threshold of 3.53 MeV are important inputs to calculations of the astrophysical re action rate. These levels in 19Ne were populated in the 3He(20Ne,alpha)19Ne reaction at a 20Ne beam energy of 34 MeV. The lifetimes of six states above the threshold were measured with the Doppler shift attenuation method (DSAM). The present measurements agree with previous determinations of the lifetimes of these states and in some cases are considerably more precise.
The Doppler-shift attenuation method was applied to measure the lifetime of the 4.03 MeV state in 19Ne. Utilizing a 3He-implanted Au foil as a target, the state was populated using the 20Ne(3He,alpha)19Ne reaction in inverse kinematics at a 20Ne beam energy of 34 MeV. De-excitation gamma rays were detected in coincidence with alpha particles. At the 1 sigma level, the lifetime was determined to be 11 +4, -3 fs and at the 95.45% confidence level the lifetime is 11 +8, -7 fs.
We have measured the beta-decay branching ratio for the transition from 21Na to the first excited state of 21Ne. A recently published test of the standard model, which was based on a measurement of the beta-nu correlation in the decay of 21Na, depend ed on this branching ratio. However, until now only relatively imprecise (and, in some cases, contradictory) values existed for it. Our new result, 4.74(4)%, reduces but does not remove the reported discrepancy with the standard model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا