ﻻ يوجد ملخص باللغة العربية
Two-pion correlation functions are analyzed at mid-rapidity for three systems (14.6 A-GeV Si+Al, Si+Au, and 11.6 A-GeV Au+Au), seven distinct centrality conditions, and different kT bins in the range 0.1--0.5 GeV/c. Source reference frames are determined from fits to the Yano-Koonin source parameterization. Bertsch-Pratt radius parameters are shown to scale linearly with both number of projectile and total participants as obtained from a Glauber model calculation. A finite emission duration that increases linearly with system/centrality is also reported. The mT dependence of the Bertsch-Pratt radii is measured for the central Si+Au and Au+Au systems. The system/centrality dependence is investigated separately for both high and low mT regions.
The probability of a projectile nucleon to traverse a target nucleus without interaction is calculated for central Si-Pb collisions and compared to the data of E814. The calculations are performed in two independent ways, via Glauber theory and using
Measurements of charged pion and kaon production are presented in centrality selected Pb+Pb collisions at 40A GeV and 158A GeV beam energy as well as in semi-central C+C and Si+Si interactions at 40A GeV. Transverse mass spectra, rapidity spectra and
We present results of a two-pion correlation analysis performed with the Au+Pb collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission ang
Elliptic flow (v_2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at sqrt{s_{NN}}= 7.7--62.4 GeV are presented for three centrality
We present the first measurements of the pseudorapidity distribution of primary charged particles in Cu+Cu collisions as a function of collision centrality and energy, sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of pseudorapidity, using the P