ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple Components in Narrow Planetary Rings

360   0   0.0 ( 0 )
 نشر من قبل Olivier Merlo
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase-space volume of regions of regular or trapped motion, for bounded or scattering systems with two degrees of freedom respectively, displays universal properties. In particular, drastic reductions in the volume (gaps) are observed at specific values of a control parameter. Using the stability resonances we show that they, and not the mean-motion resonances, account for the position of these gaps. For more degrees of freedom, exciting these resonances divides the regions of trapped motion. For planetary rings, we demonstrate that this mechanism yields rings with multiple components.



قيم البحث

اقرأ أيضاً

150 - L. Benet , O. Merlo 2004
We address the occurrence of narrow planetary rings under the interaction with shepherds. Our approach is based on a Hamiltonian framework of non-interacting particles where open motion (escape) takes place, and includes the quasi-periodic perturbati ons of the shepherds Kepler motion with small and zero eccentricity. We concentrate in the phase-space structure and establish connections with properties like the eccentricity, sharp edges and narrowness of the ring. Within our scattering approach, the organizing centers necessary for the occurrence of the rings are stable periodic orbits, or more generally, stable tori. In the case of eccentric motion of the shepherd, the rings are narrower and display a gap which defines different components of the ring.
82 - O. Merlo , L. Benet 2006
We address the occurrence of narrow planetary rings and some of their structural properties, in particular when the rings are shepherded. We consider the problem as Hamiltonian {it scattering} of a large number of non-interacting massless point parti cles in an effective potential. Using the existence of stable motion in scattering regions in this set up, we describe a mechanism in phase space for the occurrence of narrow rings and some consequences in their structure. We illustrate our approach with three examples. We find eccentric narrow rings displaying sharp edges, variable width and the appearance of distinct ring components (strands) which are spatially organized and entangled (braids). We discuss the relevance of our approach for narrow planetary rings.
221 - L. Benet , O. Merlo 2008
The phase--space volume of regions of regular or trapped motion, for bounded or scattering systems with two degrees of freedom respectively, displays universal properties. In particular, sudden reductions in the phase-space volume or gaps are observe d at specific values of the parameter which tunes the dynamics; these locations are approximated by the stability resonances. The latter are defined by a resonant condition on the stability exponents of a central linearly stable periodic orbit. We show that, for more than two degrees of freedom, these resonances can be excited opening up gaps, which effectively separate and reduce the regions of trapped motion in phase space. Using the scattering approach to narrow rings and a billiard system as example, we demonstrate that this mechanism yields rings with two or more components. Arcs are also obtained, specifically when an additional (mean-motion) resonance condition is met. We obtain a complete representation of the phase-space volume occupied by the regions of trapped motion.
We now know that the outer solar system is host to at least six diverse planetary ring systems, each of which is a scientifically compelling target with the potential to inform us about the evolution, history and even the internal structure of the bo dy it adorns. These diverse ring systems represent a set of distinct local laboratories for understanding the physics and dynamics of planetary disks, with applications reaching beyond our Solar System. We highlight the current status of planetary rings science and the open questions before the community to promote continued Earth-based and spacecraft-based investigations into planetary rings. As future spacecraft missions are launched and more powerful telescopes come online in the decades to come, we urge NASA for continued support of investigations that advance our understanding of planetary rings, through research and analysis of data from existing facilities, more laboratory work and specific attention to strong rings science goals during future mission selections.
127 - Ryan Miranda IAS 2019
It has been recently suggested that the multiple concentric rings and gaps discovered by ALMA in many protoplanetary disks may be produced by a single planet, as a result of the complex propagation and dissipation of the multiple spiral density waves it excites in the disk. Numerical efforts to verify this idea have largely utilized the so-called locally isothermal approximation with a prescribed disk temperature profile. However, in protoplanetary disks this approximation does not provide an accurate description of the density wave dynamics on scales of tens of au. Moreover, we show that locally isothermal simulations tend to overestimate the contrast of ring and gap features, as well as misrepresent their positions, when compared to simulations in which the energy equation is evolved explicitly. This outcome is caused by the non-conservation of the angular momentum flux of linear perturbations in locally isothermal disks. We demonstrate this effect using simulations of locally isothermal and adiabatic disks (with essentially identical temperature profiles) and show how the dust distributions, probed by mm wavelength observations, differ between the two cases. Locally isothermal simulations may thus underestimate the masses of planets responsible for the formation of multiple gaps and rings on scales of tens of au observed by ALMA. We suggest that caution should be exercised in using the locally isothermal simulations to explore planet-disk interaction, as well as in other studies of wave-like phenomena in astrophysical disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا