ﻻ يوجد ملخص باللغة العربية
The stochastization of the Jacobi second equality of classical mechanics, by Gaussian white noises for the Lagrangian of a particle in an arbitrary field is considered. The quantum mechanical Hamilton operator similar to that in Euclidian quantum theory is obtained. The conditional transition probability density of the presence of a Browmian particle is obtained with the help of the functional integral. The technique of factorisation of the solution of the Fokker-Planck equation is employed to evaluate the effective potential energy.
In this work we study of the dynamics of large size random neural networks. Different methods have been developed to analyse their behavior, most of them rely on heuristic methods based on Gaussian assumptions regarding the fluctuations in the limit
We present a tensor network representation of the path integral for the one-component real scalar field theory in 1+1 dimensional Minkowski space-time. It is numerically verified by comparing with the exact result in the non-interacting case.
On contrary to the customary thought, the well-known ``lemma that the distribution function of a collisionless Boltzmann gas keeps invariant along a molecules path represents not the strength but the weakness of the standard theory. One of its conseq
We study dynamical systems which admit action-angle variables at leading order which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be
Work statistics characterizes important features of a non-equilibrium thermodynamic process. But the calculation of the work statistics in an arbitrary non-equilibrium process is usually a cumbersome task. In this work, we study the work statistics i