ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulent Relative Dispersion in Two-Dimensional Free Convection Turbulence

180   0   0.0 ( 0 )
 نشر من قبل Takeshi Ogasawara
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relative dispersion process in two-dimensional free convection turbulence is investigated by direct numerical simulation. In the inertial range, the growth of relative separation, $r$, is expected as $<r^2(t)>propto t^5$ according to the Bolgiano-Obukhov scaling. The result supporting the scaling is obtained with exit-time statistics. Detailed investigation of exit-time PDF shows that the PDF is divided into two regions, the Region-I and -II, reflecting two types of separating processes: persistent expansion and random transitions between expansion and compression of relative separation. This is consistent with the physical picture of the self-similar telegraph model. In addition, a method for estimating the parameters of the model are presented. Comparing two turbulence cases, two-dimensional free convection and inverse cascade turbulence, the relation between the drift term of the model and nature of coherent structures is discussed.



قيم البحث

اقرأ أيضاً

Properties of two equations describing the evolution of the probability density function (PDF) of the relative dispersion in turbulent flow are compared by investigating their solutions: the Richardson diffusion equation with the drift term and the s elf-similar telegraph equation derived by Ogasawara and Toh [J. Phys. Soc. Jpn. 75, 083401 (2006)]. The solution of the self-similar telegraph equation vanishes at a finite point, which represents persistent separation of a particle pair, while that of the Richardson equation extends infinitely just after the initial time. Each equation has a similarity solution, which is found to be an asymptotic solution of the initial value problem. The time lag has a dominant effect on the relaxation process into the similarity solution. The approaching time to the similarity solution can be reduced by advancing the time of the similarity solution appropriately. Batchelor scaling, a scaling law relevant to initial separation, is observed only for the telegraph case. For both models, we estimate the Richardson constant, based on their similarity solutions.
We present a numerical study of two-dimensional turbulent flows in the enstrophy cascade regime, with different large-scale forcings and energy sinks. In particular, we study the statistics of more-than-differentiable velocity fluctuations by means o f two recently introduced sets of statistical estimators, namely {it inverse statistics} and {it second order differences}. We show that the 2D turbulent velocity field, $bm u$, cannot be simply characterized by its spectrum behavior, $E(k) propto k^{-alpha}$. There exists a whole set of exponents associated to the non-trivial smooth fluctuations of the velocity field at all scales. We also present a numerical investigation of the temporal properties of $bm u$ measured in different spatial locations.
Broad theoretical arguments are proposed to show, formally, that the magnitude G of the temperature gradients in turbulent thermal convection at high Rayleigh numbers obeys the same advection-diffusion equation that governs the temperature fluctuatio n T, except that the velocity field in the new equation is substantially smoothed. This smoothed field leads to a -1 scaling of the spectrum of G in the same range of scales for which the spectral exponent of T lies between -7/5 and -5/3. This result is confirmed by measurements in a confined container with cryogenic helium gas as the working fluid for Rayleigh number Ra=1.5x10^{11}. Also confirmed is the logarithmic form of the autocorrelation function of G. The anomalous scaling of dissipation-like quantities of T and G are identical in the inertial range, showing that the analogy between the two fields is quite deep.
We present a search for conformal invariance in vorticity isolines of two-dimensional compressible turbulence. The vorticity is measured by tracking the motion of particles that float at the surface of a turbulent tank of water. The three-dimensional turbulence in the tank has a Taylor microscale $Re_lambda simeq 160$. The conformal invariance theory being tested here is related to the behavior of equilibrium systems near a critical point. This theory is associated with the work of Lowner, Schramm and others and is usually referred to as Schramm-Lowner Evolution (SLE). The system was exposed to several tests of SLE. The results of these tests suggest that zero-vorticity isolines exhibit noticeable departures from this type of conformal invariance.
It is shown that the Truncated Euler Equations, i.e. a finite set of ordinary differential equations for the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur within the turbulent regime of a conf ined 2D Navier-Stokes flow with bottom friction and a spatially periodic forcing. In particular, the random reversals of the large scale circulation on the turbulent background involve bifurcations of the probability distribution function of the large-scale circulation velocity that are described by the related microcanonical distribution which displays transitions from gaussian to bimodal and broken ergodicity. A minimal 13-mode model reproduces these results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا