ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchronization of networks with prescribed degree distributions

51   0   0.0 ( 0 )
 نشر من قبل Fatihcan M. Atay
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the degree distributions of graphs do not suffice to characterize the synchronization of systems evolving on them. We prove that, for any given degree sequence satisfying certain conditions, there exists a connected graph having that degree sequence for which the first nontrivial eigenvalue of the graph Laplacian is arbitrarily close to zero. Consequently, complex dynamical systems defined on such graphs have poor synchronization properties. The result holds under quite mild assumptions, and shows that there exists classes of random, scale-free, regular, small-world, and other common network architectures which impede synchronization. The proof is based on a construction that also serves as an algorithm for building non-synchronizing networks having a prescribed degree distribution.



قيم البحث

اقرأ أيضاً

A scenario has recently been reported in which in order to stabilize complete synchronization of an oscillator network---a symmetric state---the symmetry of the system itself has to be broken by making the oscillators nonidentical. But how often does such behavior---which we term asymmetry-induced synchronization (AISync)---occur in oscillator networks? Here we present the first general scheme for constructing AISync systems and demonstrate that this behavior is the norm rather than the exception in a wide class of physical systems that can be seen as multilayer networks. Since a symmetric network in complete synchrony is the basic building block of cluster synchronization in more general networks, AISync should be common also in facilitating cluster synchronization by breaking the symmetry of the cluster subnetworks.
Degree assortativity refers to the increased or decreased probability of connecting two neurons based on their in- or out-degrees, relative to what would be expected by chance. We investigate the effects of such assortativity in a network of theta ne urons. The Ott/Antonsen ansatz is used to derive equations for the expected state of each neuron, and these equations are then coarse-grained in degree space. We generate families of effective connectivity matrices parametrised by assortativity coefficient and use SVD decompositions of these to efficiently perform numerical bifurcation analysis of the coarse-grained equations. We find that of the four possible types of degree assortativity, two have no effect on the networks dynamics, while the other two can have a significant effect.
The phenomenon of explosive synchronization, which originates from hypersensitivity to small perturbation caused by some form of frustration prevailed in various physical and biological systems, has been shown to lead events of cascading failure of t he power grid to chronic pain or epileptic seizure in the brain. Furthermore, networks provide a powerful model to understand and predict the properties of a diverse range of real-world complex systems. Recently, a multilayer network has been realized as a better suited framework for the representation of complex systems having multiple types of interactions among the same set of constituents. This article shows that by tuning the properties of one layer (network) of a multilayer network, one can regulate the dynamical behavior of another layer (network). By taking an example of a multiplex network comprising two different types of networked Kuramoto oscillators representing two different layers, this article attempts to provide a glimpse of opportunities and emerging phenomena multiplexing can induce which is otherwise not possible for a network in isolation. Here we consider explosive synchronization to demonstrate the potential of multilayer networks framework. To the end, we discuss several possible extensions of the model considered here by incorporating real-world properties.
We explore chaos in the Kuramoto model with multimodal distributions of the natural frequencies of oscillators and provide a comprehensive description under what conditions chaos occurs. For a natural frequency distribution with $M$ peaks it is typic al that there is a range of coupling strengths such that oscillators belonging to each peak form a synchronized cluster, but the clusters do not globally synchronize. We use collective coordinates to describe the inter- and intra-cluster dynamics, which reduces the Kuramoto model to $2M-1$ degrees of freedom. We show that under some assumptions, there is a time-scale splitting between the slow intracluster dynamics and fast intercluster dynamics, which reduces the collective coordinate model to an $M-1$ degree of freedom rescaled Kuramoto model. Therefore, four or more clusters are required to yield the three degrees of freedom necessary for chaos. However, the time-scale splitting breaks down if a cluster intermittently desynchronizes. We show that this intermittent desynchronization provides a mechanism for chaos for trimodal natural frequency distributions. In addition, we use collective coordinates to show analytically that chaos cannot occur for bimodal frequency distributions, even if they are asymmetric and if intermittent desynchronization occurs.
Time synchronization is important for a variety of applications in wireless sensor networks including scheduling communication resources, coordinating sensor wake/sleep cycles, and aligning signals for distributed transmission/reception. This paper d escribes a non-hierarchical approach to time synchronization in wireless sensor networks that has low overhead and can be implemented at the physical and/or MAC layers. Unlike most of the prior approaches, the approach described in this paper allows all nodes to use exactly the same distributed algorithm and does not require local averaging of measurements from other nodes. Analytical results show that the non-hierarchical approach can provide monotonic expected convergence of both drifts and offsets under broad conditions on the network topology and local clock update stepsize. Numerical results are also presented verifying the analysis under two particular network topologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا