ﻻ يوجد ملخص باللغة العربية
The fluctuations and correlations of matrix elements of cross sections are investigated in open systems that are chaotic in the classical limit. The form of the correlation functions is discussed within a statistical analysis and tested in calculations for a damped quantum kicked rotator. We briefly comment on the modifications expected for systems with slowly decaying correlations, a typical feature in mixed phase spaces.
We discuss the fluctuation properties of diagonal matrix elements in the semiclassical limit in chaotic systems. For extended observables, covering a phase space area of many times Plancks constant, both classical and quantal distributions are Gaussi
Recently, the singular value decomposition (SVD) was applied to standard Gaussian ensembles of Random Matrix Theory (RMT) to determine the scale invariance in the spectral fluctuations without performing any unfolding procedure. Here, SVD is applied
In addition to the inclusive cross sections discussed within the QCD-parton model, in the regime of multiple parton interactions, different and more exclusive cross sections become experimentally viable and may be suitably measured. Indeed, in its st
We investigate classical scattering off a harmonically oscillating target in two spatial dimensions. The shape of the scatterer is assumed to have a boundary which is locally convex at any point and does not support the presence of any periodic orbit
We present a semiclassical calculation of the generalized form factor which characterizes the fluctuations of matrix elements of the quantum operators in the eigenbasis of the Hamiltonian of a chaotic system. Our approach is based on some recently de