ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric Representation Theory and G-Signature

52   0   0.0 ( 0 )
 نشر من قبل Ralph Grieder
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English
 تأليف Ralph Grieder




اسأل ChatGPT حول البحث

Let G be a finite group. To every smooth G-action on a compact, connected and oriented surface we can associate its data of singular orbits. The set of such data becomes an Abelian group B_G under the G-equivariant connected sum. We will show that the map which sends G to B_G is functorial and carries many features of the representation theory of finite groups and thus describes a geometric representation theory. We will prove that B_G consists only of copies of Z and Z/2Z. Furthermore we will show that there is a surjection from the G-equivariant cobordism group of surface diffeomorphisms to B_G. We will define a G-signature which is related to the G-signature of Atiyah and Singer and prove that this new G-signature is injective on the copies of Z in B_G.



قيم البحث

اقرأ أيضاً

Johnsons characterization of amenable groups states that a discrete group $Gamma$ is amenable if and only if $H_b^{n geq 1}(Gamma; V) = 0$ for all dual normed $mathbb{R}[Gamma]$-modules $V$. In this paper, we extend the previous result to homomorphis ms by proving the converse of the Mapping Theorem: a surjective homomorphism $phi colon Gamma to K$ has amenable kernel $H$ if and only if the induced inflation map $H^bullet_b(K; V^H) to H^bullet_b(Gamma; V)$ is an isometric isomorphism for every dual normed $mathbb{R}[Gamma]$-module $V$. In addition, we obtain an analogous characterization for the (smaller) class of surjective homomorphisms $phi colon Gamma to K$ with the property that the inflation maps in bounded cohomology are isometric isomorphisms for all normed $mathbb{R}[Gamma]$-modules. Finally, we also prove a characterization of the (larger) class of boundedly acyclic homomorphisms $phi colon Gamma to K$, for which the restriction maps in bounded cohomology $H^bullet_b(K; V) to H^bullet_b(Gamma; phi^{-1}V)$ are isomorphisms for suitable dual normed $mathbb{R}[K]$-module $V$. We then extend the first and third results to spaces and obtain characterizations of amenable maps and boundedly acyclic maps in terms of the vanishing of the bounded cohomology of their homotopy fibers with respect to appropriate choices of coefficients.
121 - Po Hu , Igor Kriz , Petr Somberg 2018
We set up foundations of representation theory over $S$, the sphere spectrum, which is the `initial ring of stable homotopy theory. In particular, we treat $S$-Lie algebras and their representations, characters, $gl_n(S)$-Verma modules and their dual s, Harish-Chandra pairs and Zuckermann functors. As an application, we construct a Khovanov $sl_k$-stable homotopy type with a large prime hypothesis, which is a new link invariant, using a stable homotopy analogue of the method of J.Sussan.
99 - John Nicholson 2021
We resolve two long-standing and closely related problems concerning stably free $mathbb{Z} G$-modules and the homotopy type of finite 2-complexes. In particular, for all $k ge 1$, we show that there exists a group $G$ and a non-free stably free $mat hbb{Z} G$-module of rank $k$. We use this to show that, for all $k ge 0$, there exists homotopically distinct finite 2-complexes with fundamental group $G$ and with Euler characteristic $k$ greater than the minimal value over $G$. This provides a solution to Problem D5 in the 1979 Problems List of C. T. C. Wall.
106 - Ralph Grieder 1999
Let $G$ be a finite group. To every smooth $G$-action on a compact, connected and oriented Riemann surface we can associate its data of singular orbits. The set of such data becomes an Abelian group $B_G$ under the $G$-equivariant connected sum. The map which sends $G$ to $B_G$ is functorial and carries many features of the representation theory of finite groups. In this paper we will give a complete computation of the group $B_G$ for any finite group $G$. There is a surjection from the $G$-equivariant cobordism group of surface diffeomorphisms $Omega_G$ to $B_G$. We will prove that the kernel of this surjection is isomorphic to $H_2(G;Z)$. Thus $Omega_G$ is an Abelian group extension of $B_G$ by $H_2(G;Z)$. Finally we will prove that the group $B_G$ contains only elements of order two if and only if every complex character of $G$ has values in $R$. This property shows a strong relationship between the functor $B$ and the representation theory of finite groups.
We introduce $Theta$-positivity, a new notion of positivity in real semisimple Lie groups. The notion of $Theta$-positivity generalizes at the same time Lusztigs total positivity in split real Lie groups as well as well known concepts of positivity i n Lie groups of Hermitian type. We show that there are two other families of Lie groups, SO(p,q) for p<q, and a family of exceptional Lie groups, which admit a $Theta$-positive structure. We describe key aspects of $Theta$-positivity and make a connection with representations of surface groups and higher Teichmuller theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا