ﻻ يوجد ملخص باللغة العربية
Let G be a finite group. To every smooth G-action on a compact, connected and oriented surface we can associate its data of singular orbits. The set of such data becomes an Abelian group B_G under the G-equivariant connected sum. We will show that the map which sends G to B_G is functorial and carries many features of the representation theory of finite groups and thus describes a geometric representation theory. We will prove that B_G consists only of copies of Z and Z/2Z. Furthermore we will show that there is a surjection from the G-equivariant cobordism group of surface diffeomorphisms to B_G. We will define a G-signature which is related to the G-signature of Atiyah and Singer and prove that this new G-signature is injective on the copies of Z in B_G.
Johnsons characterization of amenable groups states that a discrete group $Gamma$ is amenable if and only if $H_b^{n geq 1}(Gamma; V) = 0$ for all dual normed $mathbb{R}[Gamma]$-modules $V$. In this paper, we extend the previous result to homomorphis
We set up foundations of representation theory over $S$, the sphere spectrum, which is the `initial ring of stable homotopy theory. In particular, we treat $S$-Lie algebras and their representations, characters, $gl_n(S)$-Verma modules and their dual
We resolve two long-standing and closely related problems concerning stably free $mathbb{Z} G$-modules and the homotopy type of finite 2-complexes. In particular, for all $k ge 1$, we show that there exists a group $G$ and a non-free stably free $mat
Let $G$ be a finite group. To every smooth $G$-action on a compact, connected and oriented Riemann surface we can associate its data of singular orbits. The set of such data becomes an Abelian group $B_G$ under the $G$-equivariant connected sum. The
We introduce $Theta$-positivity, a new notion of positivity in real semisimple Lie groups. The notion of $Theta$-positivity generalizes at the same time Lusztigs total positivity in split real Lie groups as well as well known concepts of positivity i