ﻻ يوجد ملخص باللغة العربية
We will prove that there exists a model of ZFC+``c= omega_2 in which every M subseteq R of cardinality less than continuum c is meager, and such that for every X subseteq R of cardinality c there exists a continuous function f:R-> R with f[X]=[0,1]. In particular in this model there is no magic set, i.e., a set M subseteq R such that the equation f[M]=g[M] implies f=g for every continuous nowhere constant functions f,g:R-> R .
Let $M$ be strongly minimal and constructed by a `Hrushovski construction. If the Hrushovski algebraization function $mu$ is in a certain class ${mathcal T}$ ($mu$ triples) we show that for independent $I$ with $|I| >1$, ${rm dcl}^*(I)= emptyset$ (*
Given a finite point set $P$ in the plane, a subset $S subseteq P$ is called an island in $P$ if $conv(S) cap P = S$. We say that $Ssubset P$ is a visible island if the points in $S$ are pairwise visible and $S$ is an island in $P$. The famous Big-li
It is shown, from hypotheses in the region of $omega^2$ Woodin cardinals, that there is a transitive model of KP + AD$_mathbb{R}$ containing all reals.
Harrington and Soare introduced the notion of an n-tardy set. They showed that there is a nonempty $mathcal{E}$ property Q(A) such that if Q(A) then A is 2-tardy. Since they also showed no 2-tardy set is complete, Harrington and Soare showed that the
We prove that a wide Morley sequence in a wide generically stable type is isometric to the standard basis of an $ell_p$ space for some $p$.