ﻻ يوجد ملخص باللغة العربية
We show that the class of trapezoid orders in which no trapezoid strictly contains any other trapezoid strictly contains the class of trapezoid orders in which every trapezoid can be drawn with unit area. This is different from the case of interval orders, where the class of proper interval orders is exactly the same as the class of unit interval orders.
An interval $k$-graph is the intersection graph of a family $mathcal{I}$ of intervals of the real line partitioned into at most $k$ classes with vertices adjacent if and only if their corresponding intervals intersect and belong to different classes.
A short proof is given that the graphs with proper interval representations are the same as the graphs with unit interval representations.
In this paper we extend the work of Rautenbach and Szwarcfiter by giving a structural characterization of graphs that can be represented by the intersection of unit intervals that may or may not contain their endpoints. A characterization was proved
Interval graphs were used in the study of genomics by the famous molecular biologist Benzer. Later on probe interval graphs were introduced by Zhang as a generalization of interval graphs for the study of cosmid contig mapping of DNA. A tagged prob
A tree $T$ in an edge-colored graph is a emph{proper tree} if any two adjacent edges of $T$ are colored with different colors. Let $G$ be a graph of order $n$ and $k$ be a fixed integer with $2leq kleq n$. For a vertex set $Ssubseteq V(G)$, a tree co