ﻻ يوجد ملخص باللغة العربية
A function f:R -> R is approximately continuous iff it is continuous in the density topology, i.e., for any ordinary open set U the set E=f^{-1}(U) is measurable and has Lebesgue density one at each of its points. Denjoy proved that approximately continuous functions are Baire 1., i.e., pointwise For any f:R^2 -> R define f_x(y) = f^y(x) = f(x,y). A function f:R^2 -> R is separately continuous if f_x and f^y are continuous for every x,y in R. Lebesgue in his first paper proved that any separately continuous function is Baire 1. Sierpinski showed that there exists a nonmeasurable f:R^2 -> R which is separately Baire 1. In this paper we prove: Thm 1. Let f:R^2 -> R be such that f_x is approximately continuous and f^y is Baire 1 for every x,y in R. Then f is Baire 2. Thm 2. Suppose there exists a real-valued measurable cardinal. Then for any function f:R^2 -> R and countable ordinal i, if f_x is approximately continuous and f^y is Baire i for every x,y in R, then f is Baire i+1 as a function of two variables. Thm 3. (i) Suppose that R can be covered by omega_1 closed null sets. Then there exists a nonmeasurable function f:R^2 -> R such that f_x is approximately continuous and f^y is Baire 2 for every x,y in R. (ii) Suppose that R can be covered by omega_1 null sets. Then there exists a nonmeasurable function f:R^2 -> R such that f_x is approximately continuous and f^y is Baire 3 for every x,y in R. Thm 4. In the random real model for any function f:R^2 -> R if f_x is approximately continuous and f^y is measurable for every x,y in R, then f is measurable as a function of two variables.
The linear continuity of a function defined on a vector space means that its restriction on every affine line is continuous. For functions defined on $mathbb R^m$ this notion is near to the separate continuity for which it is required only the contin
A function F:R^2->R is sup-measurable if F_f:R->R given by F_f(x)=F(x,f(x)), x in R, is measurable for each measurable function f:R->R. It is known that under different set theoretical assumptions, including CH, there are sup-measurable non-measurabl
We define a notion of stable and measurable map between cones endowed with measurability tests and show that it forms a cpo-enriched cartesian closed category. This category gives a denotational model of an extension of PCF supporting the main primit
An abstract system of congruences describes a way of partitioning a space into finitely many pieces satisfying certain congruence relations. Examples of abstract systems of congruences include paradoxical decompositions and $n$-divisibility of action
A function f from reals to reals (f:R->R) is almost continuous (in the sense of Stallings) iff every open set in the plane which contains the graph of f contains the graph of a continuous function. Natkaniec showed that for any family F of continuu