ﻻ يوجد ملخص باللغة العربية
The addition-deletion theorems for hyperplane arrangements, which were originally shown in [H. Terao, Arrangements of hyperplanes and their freeness I, II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 293--320], provide useful ways to construct examples of free arrangements. In this article, we prove addition-deletion theorems for multiarrangements. A key to the generalization is the definition of a new multiplicity, called the Euler multiplicity, of a restricted multiarrangement. We compute the Euler multiplicities in many cases. Then we apply the addition-deletion theorems to various arrangements including supersolvable arrangements and the Coxeter arrangement of type $A_{3}$ to construct free and non-free multiarrangements.
In the study of free arrangements, the most useful result to construct/check free arrangements is the addition-deletion theorem. Recently, the multiple version of the addition theorem is proved, called the multiple addition theorem (MAT) to prove the
We introduce a concept of multiplicity lattices of 2-multiarrangements, determine the combinatorics and geometry of that lattice, and give a criterion and method to construct a basis for derivation modules effectively.
Hyperplane Arrangements of rank $3$ admitting an unbalanced Ziegler restriction are known to fulfill Teraos conjecture. This long-standing conjecture asks whether the freeness of an arrangement is determined by its combinatorics. In this note, we pro
In the theory of hyperplane arrangements, the most important and difficult problem is the combinatorial dependency of several properties. In this atricle, we prove that Teraos celebrated addition-deletion theorem for free arrangements is combinatoria
The classical Peter-Weyl theorem describes the structure of the space of functions on a semi-simple algebraic group. On the level of characters (in type A) this boils down to the Cauchy identity for the products of Schur polynomials. We formulate and