ﻻ يوجد ملخص باللغة العربية
Suppose that $alpha in (0,2)$ and that $X$ is an $alpha$-stable-like process on $R^d$. Let $F$ be a function on $R^d$ belonging to the class $bf{J_{d,alpha}}$ (see Introduction) and $A_{t}^{F}$ be $sum_{s le t}F(X_{s-},X_{s}), t> 0$, a discontinuous additive functional of $X$. With neither $F$ nor $X$ being symmetric, under certain conditions, we show that the Feynman-Kac semigroup ${S_{t}^{F}:t ge 0}$ defined by $$ S_{t}^{F}f(x)=mathbb{E}_{x}(e^{-A_{t}^{F}}f(X_{t}))$$ has a density $q$ and that there exist positive constants $C_1,C_2,C_3$ and $C_4$ such that $$C_{1}e^{-C_{2}t}t^{-frac{d}{alpha}}(1 wedge frac{t^{frac{1}{alpha}}}{|x-y|})^{d+alpha} leq q(t,x,y) leq C_{3}e^{C_{4}t}t^{-frac{d}{alpha}}(1 wedge frac{t^{frac{1}{alpha}}}{|x-y|})^{d+alpha}$$ for all $(t,x,y)in (0,infty) times R^d times R^d$.
In this paper, we study the purely discontinuous Girsanov transforms which were discussed in Chen and Song cite{CS2} and Song cite{S3}. We show that the transition density of any purely discontinuous Girsanov transform of a $alpha$-stable-like proces
We consider a new family of $R^d$-valued L{e}vy processes that we call Lamperti stable. One of the advantages of this class is that the law of many related functionals can be computed explicitely (see for instance cite{cc}, cite{ckp}, cite{kp} and ci
We consider a real-valued diffusion process with a linear jump term driven by a Poisson point process and we assume that the jump amplitudes have a centered density with finite moments. We show upper and lower estimates for the density of the solutio
This paper presents a partial state of the art about the topic of representation of generalized Fokker-Planck Partial Differential Equations (PDEs) by solutions of McKean Feynman-Kac Equations (MFKEs) that generalize the notion of McKean Stochastic D
We exhibit an exact simulation algorithm for the supremum of a stable process over a finite time interval using dominated coupling from the past (DCFTP). We establish a novel perpetuity equation for the supremum (via the representation of the concave