ﻻ يوجد ملخص باللغة العربية
T. Erd{e}lyi, A.P. Magnus and P. Nevai conjectured that for $alpha, beta ge - {1/2} ,$ the orthonormal Jacobi polynomials ${bf P}_k^{(alpha, beta)} (x)$ satisfy the inequality begin{equation*} max_{x in [-1,1]}(1-x)^{alpha+{1/2}}(1+x)^{beta+{1/2}}({bf P}_k^{(alpha, beta)} (x) )^2 =O (max left{1,(alpha^2+beta^2)^{1/4} right}), end{equation*} [Erd{e}lyi et al.,Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials, SIAM J. Math. Anal. 25 (1994), 602-614]. Here we will confirm this conjecture in the ultraspherical case $alpha = beta ge frac{1+ sqrt{2}}{4},$ even in a stronger form by giving very explicit upper bounds. We also show that begin{equation*} sqrt{delta^2-x^2} (1-x^2)^{alpha}({bf P}_{2k}^{(alpha, alpha)} (x))^2 < frac{2}{pi} (1+ frac{1}{8(2k+ alpha)^2} ) end{equation*} for a certain choice of $delta,$ such that the interval $(- delta, delta)$ contains all the zeros of ${bf P}_{2k}^{(alpha, alpha)} (x).$ Slightly weaker bounds are given for polynomials of odd degree.
Let ${bf P}_k^{(alpha, beta)} (x)$ be an orthonormal Jacobi polynomial of degree $k.$ We will establish the following inequality begin{equation*} max_{x in [delta_{-1},delta_1]}sqrt{(x- delta_{-1})(delta_1-x)} (1-x)^{alpha}(1+x)^{beta} ({bf P}_{k}^{(
We consider a set of measures on the real line and the corresponding system of multiple orthogonal polynomials (MOPs) of the first and second type. Under some very mild assumptions, which are satisfied by Angelesco systems, we define self-adjoint Jac
The discrete orthogonality relations hold for all the orthogonal polynomials obeying three term recurrence relations. We show that they also hold for multi-indexed Laguerre and Jacobi polynomials, which are new orthogonal polynomials obtained by defo
The aim of this paper is to apply generalized operators of fractional integration and differentiation involving Appells function $F_{3}(:)$ due to Marichev-Saigo-Maeda (MSM), to the Jacobi type orthogonal polynomials. The results are expressed in ter
The present paper is about Bernstein-type estimates for Jacobi polynomials and their applications to various branches in mathematics. This is an old topic but we want to add a new wrinkle by establishing some intriguing connections with dispersive es