ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebraic theory of affine curvature tensors

200   0   0.0 ( 0 )
 نشر من قبل Peter B. Gilkey
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use curvature decompositions to construct generating sets for the space of algebraic curvature tensors and for the space of tensors with the same symmetries as those of a torsion free, Ricci symmetric connection; the latter naturally appear in relative hypersurface theory.



قيم البحث

اقرأ أيضاً

281 - P. Gilkey , S. Nikcevic , 2009
We present an algebraic investigation of generalized and equiaffine curvature tensors in a given pseudo-Euclidean vector space and study different orthogonal, irreducible decompositions in analogy to the known decomposition of algebraic curvature ten sors. We apply the decomposition results to characterize geometric properties of Codazzi structures and relative hypersurfaces; particular emphasis is on projectively flat structures.
101 - P. Gilkey , S. Nikcevic 2007
We classify algebraic curvature tensors such that the Ricci operator is simple (i.e. the Ricci operator is complex diagonalizable and either the complex spectrum consists of a single real eigenvalue or the complex spectrum consists of a pair of eigen values which are complex conjugates of each other) and which are Jacobi--Ricci commuting (i.e. the Ricci operator commutes with the Jacobi operator of any vector).
We examine questions of geometric realizability for algebraic structures which arise naturally in affine and Riemannian geometry. Suppose given an algebraic curvature operator R at a point P of a manifold M and suppose given a real analytic (resp. C- k for finite k at least 2) pseudo-Riemannian metric on M defined near P. We construct a torsion free real analytic (resp. C-k) connection D which is defined near P on the tangent bundle of M whose curvature operator is the given operator R at P and so that D has constant scalar curvature. We show that if R is Ricci symmetric, then D can be chosen to be Ricci symmetric; if R has trace free Ricci tensor, then D can be chosen to have trace free Ricci tensor; if R is Ricci alternating, then D can be chosen to be Ricci alternating.
We use results of Matzeu and Nikcevic to decompose the space of affine Kaehler curvature tensors as a direct sum of irreducible modules in the complex setting
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا