ﻻ يوجد ملخص باللغة العربية
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. In this survey we discuss the following two fundamental Discretization Principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem discussed in this survey is a discretization of curvature line parametrized surfaces in Lie geometry. We find a discretization of curvature line parametrization which unifies the circular and conical nets by systematically applying the Discretization Principles.
This paper has been withdrawn by the authors due to the fact that the webs considered in the paper are ``Veronese-like webs which are different from Veronese webs.
The paper introduces a new differential-geometric system which originates from the theory of $m$-Hessian operators. The core of this system is a new notion of invariant differentiation on multidimensional surfaces. This novelty gives rise to the foll
This book is expository and is in Russian (sample English translation of two pages is given). It is shown how in the course of solution of interesting geometric problems (close to applications) naturally appear different notions of curvature, which d
We briefly recall a fundamental exterior differential system introduced by the author and then apply it to the case of three dimensions. Here we find new global tensors and intrinsic invariants of oriented Riemaniann 3-manifolds. The system leads to