ﻻ يوجد ملخص باللغة العربية
Elliptically contoured distributions can be considered to be the distributions for which the contours of the density functions are proportional ellipsoids. Kamiya, Takemura and Kuriki (2006) generalized the elliptically contoured distributions to star-shaped distributions, for which the contours are allowed to be arbitrary proportional star-shaped sets. This was achieved by considering the so-called orbital decomposition of the sample space in the general framework of group invariance. In the present paper, we extend their results by conducting the orbital decompositions in steps and obtaining a further, hierarchical decomposition of the sample space. This allows us to construct probability models and distributions with further independence structures. The general results are applied to the star-shaped distributions with a certain symmetric structure, the distributions related to the two-sample Wishart problem and the distributions of preference rankings.
In this paper, we explore a connection between binary hierarchical models, their marginal polytopes and codeword polytopes, the convex hulls of linear codes. The class of linear codes that are realizable by hierarchical models is determined. We class
Elliptically contoured distributions can be considered to be the distributions for which the contours of the density functions are proportional ellipsoids. We generalize elliptically contoured densities to ``star-shaped distributions with concentric
A (p-1)-variate integral representation is given for the cumulative distribution function of the general p-variate non-central gamma distribution with a non-centrality matrix of any admissible rank. The real part of products of well known analytical
We introduce new shape-constrained classes of distribution functions on R, the bi-$s^*$-concave classes. In parallel to results of Dumbgen, Kolesnyk, and Wilke (2017) for what they called the class of bi-log-concave distribution functions, we show th
We introduce a new shape-constrained class of distribution functions on R, the bi-$s^*$-concave class. In parallel to results of Dumbgen, Kolesnyk, and Wilke (2017) for what they called the class of bi-log-concave distribution functions, we show that