ﻻ يوجد ملخص باللغة العربية
An embeddability criterion for zero-dimensional metrizable topological spaces in zero-dimensional metrizable topological groups is given. A space which can be embedded as a closed subspace in a zero-dimensional metrizable group but is not strongly zero-dimensional is constructed; thereby, an example of a metrizable group with noncoinciding dimensions ind and dim is obtained. It is proved that one of Kuleszas zero-dimensional metrizable spaces cannot be embedded in a metrizable zero-dimensional group.
A topological group $G$ is called an $M_omega$-group if it admits a countable cover $K$ by closed metrizable subspaces of $G$ such that a subset $U$ of $G$ is open in $G$ if and only if $Ucap K$ is open in $K$ for every $KinK$. It is shown that any t
A theorem of A. Weil asserts that a topological group embeds as a (dense) subgroup of a locally compact group if and only if it contains a non-empty precompact open set; such groups are called locally precompact. Within the class of locally precompac
We discuss various modifications of separability, precompactnmess and narrowness in topological groups and test those modifications in the permutation groups $S(X)$ and $S_{<omega}(X)$.
We answer several questions of I.Protasov and E.Zelenyuk concerning topologies on groups determined by T-sequences. A special attention is paid to studying the operation of supremum of two group topologies.
We consider left-invariant distances $d$ on a Lie group $G$ with the property that there exists a multiplicative one-parameter group of Lie automorphisms $(0, infty)rightarrowmathtt{Aut}(G)$, $lambdamapstodelta_lambda$, so that $ d(delta_lambda x,del