ﻻ يوجد ملخص باللغة العربية
In this paper (Math. Res. Lett. 13 (2006). No 4, 509-523), the authors established a pseudo-normal form for proper holomoprhic mappings between balls in complex spaces with degenerate rank. This then was used to give a complete characterization for all proper holomorphic maps with geometric rank one, which, in particular, includes the following as an immediate application: Theorem: Any rational holomorphic map from B^n into B^N with $4le nle Nle 3n-4$ is equivalent to the DAngelo map $$F_{theta}(z,w)=(z,(costheta)w,(sintheta)z_1w, ..., (sintheta)z_{n-1}w, (sintheta)w^2, 0), 0le thetaleq pi/2.$$ It is a well-known (but also quite trivial) fact that any non-constant rational CR map from a piece of the sphere $partial {B^n}$ into the sphere $partial {B^N}$ can be extended as a proper rational holomoprhic map from $B^n$ into $B^N$ ($Nge nge 2$). By using the rationality theorem that the authors established in [HJX05], one sees that the the above theorem (and also the main theorem of the paper) holds in the same way for any non-constant $C^3$-smooth CR map from a piece of $partial {B^n}$ into $partial{B^N}$. The paper [Math. Res. Lett. 13 (2006). No 4, 509-523] was first electronically published by Mathematical Research Letters several months ago at its home website: http://www.mrlonline.org/mrl/0000-000-00/Huang-Ji-Xu2.pdf. (The pdf file of the printed journal version can also be downloaded at http://www.math.uh.edu/~shanyuji/rank1.pdf).
We introduce several homotopy equivalence relations for proper holomorphic mappings between balls. We provide examples showing that the degree of a rational proper mapping between balls (in positive codimension) is not a homotopy invariant. In domain
We construct a complete proper holomorphic embedding from any strictly pseudoconvex domain with $mathcal{C}^2$-boundary in $mathbb{C}^n$ into the unit ball of $mathbb{C}^N$, for $N$ large enough, thereby answering a question of Alarcon and Forstneric.
We make several new contributions to the study of proper holomorphic mappings between balls. Our results include a degree estimate for rational proper maps, a new gap phenomenon for convex families of arbitrary proper maps, and an interesting result about inverse images.
Cartan-Thullen theorem is a basic one in the theory of analytic functions of several complex variables. It states that for any open set $U$ of ${mathbb C}^k$, the following conditions are equivalent: (a) $U$ is a domain of existence, (b) $U$ is a dom
In this paper, we generalize a recent work of Liu et al. from the open unit ball $mathbb B^n$ to more general bounded strongly pseudoconvex domains with $C^2$ boundary. It turns out that part of the main result in this paper is in some certain sense