ترغب بنشر مسار تعليمي؟ اضغط هنا

On uniqueness properties of solutions of the k-generalized KdV equations

84   0   0.0 ( 0 )
 نشر من قبل Gustavo Ponce
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study uniqueness properties of solutions of the k-generalized Korteweg-de Vries equation. Our goal is to obtain sufficient conditions on the behavior of the difference $u_1-u_2$ of two solutions $u_1, u_2$ of the equation at two different times $t_0=0$ and $t_1=1$ which guarantee that $u_1equiv u_2$.



قيم البحث

اقرأ أيضاً

In this work we shall review some of our recent results concerning unique continuation properties of solutions of Schrodinger equations. In this equations we include linear ones with a time depending potential and semi-linear ones.
This paper studies the dissipative generalized surface quasi-geostrophic equations in a supercritical regime where the order of the dissipation is small relative to order of the velocity, and the velocities are less regular than the advected scalar b y up to one order of derivative. We also consider a non-degenerate modification of the endpoint case in which the velocity is less smooth than the advected scalar by slightly more than one order. The existence and uniqueness theory of these equations in the borderline Sobolev spaces is addressed, as well as the instantaneous smoothing effect of their corresponding solutions. In particular, it is shown that solutions emanating from initial data belonging to these Sobolev classes immediately enter a Gevrey class. Such results appear to be the first of its kind for a quasilinear parabolic equation whose coefficients are of higher order than its linear term; they rely on an approximation scheme which modifies the flux in such a way that preserves the underlying commutator structure lost by having to work in the critical space setting, as well as delicate adaptations of well-known commutator estimates to Gevrey classes.
We consider a quasilinear KdV equation that admits compactly supported traveling wave solutions (compactons). This model is one of the most straightforward instances of degenerate dispersion, a phenomenon that appears in a variety of physical setting s as diverse as sedimentation, magma dynamics and shallow water waves. We prove the existence and uniqueness of solutions with sufficiently smooth, spatially localized initial data.
We prove that a solution of the Toda lattice cannot decay too fast at two different times unless it is trivial. In fact, we establish this result for the entire Toda and Kac-van Moerbeke hierarchies.
We study boundary blow-up solutions of semilinear elliptic equations $Lu=u_+^p$ with $p>1$, or $Lu=e^{au}$ with $a>0$, where $L$ is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا