ﻻ يوجد ملخص باللغة العربية
We consider second-order partial differential operators $H$ in divergence form on $Ri^d$ with a positive-semidefinite, symmetric, matrix $C$ of real $L_infty$-coefficients and establish that $H$ is strongly elliptic if and only if the associated semigroup kernel satisfies local lower bounds, or, if and only if the kernel satisfies Gaussian upper and lower bounds.
In this paper, we establish two sufficient conditions for the strong ellipticity of any fourth-order elasticity tensor and investigate a class of tensors satisfying the strong ellipticity condition, the elasticity $mathscr{M}$-tensor. The first suffi
We study high-order harmonic generation (HHG) from aligned molecules in strong elliptically polarized laser fields numerically and analytically. Our simulations show that the spectra and polarization of HHG depend strongly on the molecular alignment
We provide sufficient conditions on the coefficients of a stochastic evolution equation on a Hilbert space of functions driven by a cylindrical Wiener process ensuring that its mild solution is positive if the initial datum is positive. As an applica
For solutions of ${rm div},(DF(Du))=f$ we show that the quasiconformality of $zmapsto DF(z)$ is the key property leading to the Sobolev regularity of the stress field $DF(Du)$, in relation with the summability of $f$. This class of nonlinearities enc
We prove a maximum principle for mild solutions to stochastic evolution equations with (locally) Lipschitz coefficients and Wiener noise on weighted $L^2$ spaces. As an application, we provide sufficient conditions for the positivity of forward rates