ﻻ يوجد ملخص باللغة العربية
A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence simple unified proofs are obtained for formulas of Poincare polynomials of toric hyperkahler varieties, Poincare polynomials of Hilbert schemes of points and twisted ADHM spaces of instantons on C^2 and Poincare polynomials of all Nakajima quiver varieties. As an application, a proof of a conjecture of Kac on the number of absolutely indecomposable representations of a quiver is announced.
We extend a result of Guan by showing that the second Betti number of a 4-dimensional primitively symplectic orbifold is at most 23 and there are at most 91 singular points. The maximal possibility 23 can only occur in the smooth case. In addition to
Recently Brosnan and Chow have proven a conjecture of Shareshian and Wachs describing a representation of the symmetric group on the cohomology of regular semisimple Hessenberg varieties for $GL_n(mathbb{C})$. A key component of their argument is tha
We study the expected behavior of the Betti numbers of arrangements of the zeros of random (distributed according to the Kostlan distribution) polynomials in $mathbb{R}mathrm{P}^n$. Using a random spectral sequence, we prove an asymptotically exact e
We introduce a new class of monomial ideals which we call symmetric shifted ideals. Symmetric shifted ideals are fixed by the natural action of the symmetric group and, within the class of monomial ideals fixed by this action, they can be considered
A C-symplectic structure is a complex-valued 2-form which is holomorphically symplectic for an appropriate complex structure. We prove an analogue of Mosers isotopy theorem for families of C-symplectic structures and list several applications of this