ﻻ يوجد ملخص باللغة العربية
This text is a study of the missing case in our article [B.91], that is to say the eigenvalue 1 case. Of course this is a more involved situation because the existence of the smooth stratum for the hypersurface {f = 0} forces to consider three strata for the nearby cycles. And we already know that the smooth stratum is always tangled if it is not alone (see [B.84b] and the introduction of [B.03]). The new phenomenon is the role played here by a new cohomology group, denote by $H^n_{ccap S}(F)_{=1}$, of the Milnors fiber of f at the origin. It has the same dimension as $H^n(F)_{=1}$ and $H^n_c(F)_{=1}$, and it leads to a non trivial factorization of the canonical map $$ can : H^n_{ccap S}(F)_{=1} to H^n_c(F)_{=1},$$ and to a monodromic isomorphism of variation $$ var :H^n_{ccap S}(F)_{=1}to H^n_c(F)_{=1}.$$ It gives a canonical hermitian form $$ mathcal{H} : H^n_{ccap S}(F)_{=1} times H^n(F )_{=1} to mathbb{C}$$ which is non degenerate. This generalizes the case of an isolated singularity for the eigenvalue 1 (see [B.90] and [B.97]). The overtangling phenomenon for strata associated to the eigenvalue 1 implies the existence of triple poles at negative integers (with big enough absolute value) for the meromorphic continuation of the distribution $int_X |f |^{2lambda}square $ for functions f having semi-simple local monodromies at each singular point of {f =0}.
In this article, we consider the links between parabolic induction and the local Langlands correspondence. We enunciate a conjecture about the (enhanced) Langlands parameters of supercuspidal representation of split reductives $p$-adics groups. We ar
Let ${rm F}$ be a rank-2 semi-stable sheaf on the projective plane, with Chern classes $c_{1}=0,c_{2}=n$. The curve $beta_{rm F}$ of jumping lines of ${rm F}$, in the dual projective plane, has degree $n$. Let ${rm M}_{n}$ be the moduli space of equi
In this paper, we present some high level information fusion approaches for numeric and symbolic data. We study the interest of such method particularly for classifier fusion. A comparative study is made in a context of sea bed characterization from
This paper contains results concerning a conjecture made by Lang and Silverman predicting a lower bound for the canonical height on abelian varieties of dimension 2 over number fields. The method used here is a local height decomposition. We derive a
We study the dynamics of surface homeomorphisms around isolated fixed points whose Poincar{e}-Lefschetz index is not equal to 1. We construct a new conjugacy invariant, which is a cyclic word on the alphabet ${ua, ra, da, la}$. This invariant is a re