ﻻ يوجد ملخص باللغة العربية
In some other context, the question was raised how many nearly Kahler structures exist on the sphere $S^6$ equipped with the standard Riemannian metric. In this short note, we prove that, up to isometry, there exists only one. This is a consequence of the description of the eigenspace to the eigenvalue $lambda = 12$ of the Laplacian acting on 2-forms. A similar result concerning nearly parallel $G_2$-structures on the round sphere $S^7$ holds, too. An alternative proof by Riemannian Killing spinors is also indicated.
We study generic Riemannian submersions from nearly Kaehler manifolds onto Riemannian manifolds. We investigate conditions for the integrability of various distributions arising for generic Riemannian submersions and also obtain conditions for leaves
In the present paper, we investigate geometric properties of Clairaut anti-invariant submersions whose total space is a nearly Kaehler manifold. We obtain condition for Clairaut anti-invariant submersion to be a totally geodesic map and also study Cl
Non-existence of warped product semi-slant submanifolds of Kaehler manifolds was proved in [17], it is interesting to find their existence. In this paper, we prove the existence of warped product semi-slant submanifolds of nearly Kaehler manifolds by
It is a prominent conjecture (relating Riemannian geometry and algebraic topology) that all simply-connected compact manifolds of special holonomy should be formal spaces, i.e., their rational homotopy type should be derivable from their rational coh
Almost contact structures can be identified with sections of a twistor bundle and this allows to define their harmonicity, as sections or maps. We consider the class of nearly cosymplectic almost contact structures on a Riemannian manifold and prove