ﻻ يوجد ملخص باللغة العربية
This article gives a complex analysis lighting on the problem which consists in restoring a bordered connected riemaniann surface from its boundary and its Dirichlet-Neumann operator. The three aspects of this problem, unicity, reconstruction and characterization are approached.
Quantum waveguide with the shape of planar infinite straight strip and combined Dirichlet and Neumann boundary conditions on the opposite half-lines of the boundary is considered. The absence of the point as well as of the singular continuous spectrum is proved.
We introduce a function model for the Teichmuller space of a closed hyperbolic Riemann surface. Then we introduce a new metric by using the maximum norm on the function space on the Teichmuller space. We prove that the identity map from the Teichmull
We have obtained the explic
In this work, we propose novel discretizations of the spectral fractional Laplacian on bounded domains based on the integral formulation of the operator via the heat-semigroup formalism. Specifically, we combine suitable quadrature formulas of the in
We give several new characterizations of Caratheodory convergence of simply connected domains. We then investigate how different definitions of convergence generalize to the multiply-connected case.