ترغب بنشر مسار تعليمي؟ اضغط هنا

Vibrations of a beam between stops: convergence of a fully discretized approximation

53   0   0.0 ( 0 )
 نشر من قبل Yves Dumont YD
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the dynamics of an elastic beam which is clamped at its left end to a vibrating support and which can move freely at its right end between two rigid obstacles (the stops). We model the contact with Signorinis complementary conditions between the displacement and the shear stress. For this infinite dimensional contact problem, we propose a family of fully discretized approximations and their convergence is proved. Moreover some examples of implementation are presented.



قيم البحث

اقرأ أيضاً

We consider the geometry relaxation of an isolated point defect embedded in a homogeneous crystalline solid, within an atomistic description. We prove a sharp convergence rate for a periodic supercell approximation with respect to uniform convergence of the discrete strains.
In this paper we investigate a discrete approximation in time and in space of a Hilbert space valued stochastic process ${u(t)}_{tin [0,T]}$ satisfying a stochastic linear evolution equation with a positive-type memory term driven by an additive Gaus sian noise. The equation can be written in an abstract form as $$ dd u + (int_0^t b(t-s) Au(s) , dd s), dd t = dd W^{_Q}, tin (0,T]; quad u(0)=u_0 in H, $$ where $W^{_Q}$ is a $Q$-Wiener process on $H=L^2({mathcal D})$ and where the main example of $b$ we consider is given by $$ b(t) = t^{beta-1}/Gamma(beta), quad 0 < beta <1. $$ We let $A$ be an unbounded linear self-adjoint positive operator on $H$ and we further assume that there exist $alpha >0$ such that $A^{-alpha}$ has finite trace and that $Q$ is bounded from $H$ into $D(A^kappa)$ for some real $kappa$ with $alpha-frac{1}{beta+1}<kappa leq alpha$. The discretization is achieved via an implicit Euler scheme and a Laplace transform convolution quadrature in time (parameter $Delta t =T/n$), and a standard continuous finite element method in space (parameter $h$). Let $u_{n,h}$ be the discrete solution at $T=nDelta t$. We show that $$ (E | u_{n,h} - u(T)|^2)^{1/2}={mathcal O}(h^{ u} + Delta t^gamma), $$ for any $gamma< (1 - (beta+1)(alpha - kappa))/2 $ and $ u leq frac{1}{beta+1}-alpha+kappa$.
A new set of nonlocal boundary conditions are proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive eq uations are performed on a nested set of domains, and the results are discussed.
80 - Vincent Bruneau 2016
In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacl e inside the computational domain is treated with a penalization method introducing a parameter $eta$. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the penalty parameter $epsilon$, which induces a small divergence and the time step $delta$t tend to zero with a proportionality constraint $epsilon$ = $lambda$$delta$t. Finally, when $eta$ goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-sleep condition on the solid boundary. R{e}sum{e} Dans ce travail nous analysons un sch{e}ma de projection vectorielle (voir [1]) pour traiter le d{e}placement dun corps solide dans un fluide visqueux incompressible dans le cas o` u linteraction du fluide sur le solide est n{e}gligeable. La pr{e}sence de lobstacle dans le domaine solide est mod{e}lis{e}e par une m{e}thode de p{e}nalisation. Nous montrons la stabilit{e} du sch{e}ma et la convergence des variables vitesse-pression vers une limite quand le param etre $epsilon$ qui assure une faible divergence et le pas de temps $delta$t tendent vers 0 avec une contrainte de proportionalit{e} $epsilon$ = $lambda$$delta$t. Finalement nous montrons que leprob{`i} eme converge au sens faible vers une solution des equations de Navier-Stokes avec une condition aux limites de non glissement sur lafront{`i} ere immerg{e}e quand le param etre de p{e}nalisation $eta$ tend vers 0.
We introduce a novel spatio-temporal discretization for nonlinear Fokker-Planck equations on the multi-dimensional unit cube. This discretization is based on two structural properties of these equations: the first is the representation as a gradient flow of an entropy functional in the $L^2$-Wasserstein metric, the second is the Lagrangian nature, meaning that solutions can be written as the push forward transformation of the initial density under suitable flow maps. The resulting numerical scheme is entropy diminishing and mass conserving. Further, the scheme is weakly stable, which allows us to prove convergence under certain regularity assumptions. Finally, we present results from numerical experiments in space dimension $d=2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا