ﻻ يوجد ملخص باللغة العربية
We study the discriminant of a degree 4 extension given by a deformed bidouble cover, i.e., by equations z^2= u + a w, w^2= v + bz. We first show that the discriminant surface is a quartic which is cuspidal on a twisted cubic, i.e.,is the discriminant of the general equation of degree 3. We then take a(u,v), b(u,v) and get a 3-cuspidal affine quartic curve whose braid monodromy we compute. This calculation of the local braid monodromy is a step towards the determination of global braid monodromies, e.g. for the (a,b,c) surfaces previously considered by the authors. In the revision we fill a gap (noticed by the referee) in the proof of the classical theorem that any quartic surface which has the twisted cubic as cuspidal curve is its tangential developable, and we changed a base point in order to make a picture correct.
The {em Wiman-Edge pencil} is the universal family $Cs/mathcal B$ of projective, genus $6$, complex-algebraic curves admitting a faithful action of the icosahedral group $Af_5$. The goal of this paper is to prove that the monodromy of $Cs/mathcal B$
In this thesis, I determine a bound on the defect of terminal Gorenstein quartic 3-folds. More generally, I study the defect of terminal Gorenstein Fano 3-folds of Picard rank 1 and genus at least 3. I state a geometric motivation of non Q-factoriality in the case of quartics.
We study the Prym varieties arising from etale cyclic coverings of degree 7 over a curve of genus 2. These Prym varieties are products of Jacobians JY x JY of genus 3 curves Y with polarization type D=(1,1,1,1,1,7). We describe the fibers of the Prym
Let $Xsubset mathbb{P}^4$ be a terminal factorial quartic $3$-fold. If $X$ is non-singular, $X$ is emph{birationally rigid}, i.e. the classical MMP on any terminal $mathbb{Q}$-factorial projective variety $Z$ birational to $X$ always terminates with
This paper studies the birational geometry of terminal Gorenstein Fano 3-folds. If Y is not Q-factorial, in most cases, it is possible to describe explicitly the divisor class group Cl Y by running a Minimal Model Program (MMP) on X, a small Q-factor