ترغب بنشر مسار تعليمي؟ اضغط هنا

Gromov-Witten theory and Donaldson-Thomas theory, I

235   0   0.0 ( 0 )
 نشر من قبل Rahul Pandharipande
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We conjecture an equivalence between the Gromov-Witten theory of 3-folds and the holomorphic Chern-Simons theory of Donaldson-Thomas. For Calabi-Yau 3-folds, the equivalence is defined by the change of variables, exp(iu)=-q, where u is the genus parameter of GW theory and q is charge parameter of DT theory. The conjecture is proven for local Calabi-Yau toric surfaces.



قيم البحث

اقرأ أيضاً

We discuss the GW/DT correspondence for 3-folds in both the absolute and relative cases. Descendents in Gromov-Witten theory are conjectured to be equivalent to Chern characters of the universal sheaf in Donaldson-Thomas theory. Relative constraints in Gromov-Witten theory are conjectured to correspond in Donaldson-Thomas theory to cohomology classes of the Hilbert scheme of points of the relative divisor. Independent of the conjectural framework, we prove degree 0 formulas for the absolute and relative Donaldson-Thomas theories of toric varieties.
187 - Artan Sheshmani 2019
This article provides a summary of arXiv:1701.08899 and arXiv:1701.08902 where the authors studied the enumerative geometry of nested Hilbert schemes of points and curves on algebraic surfaces and their connections to threefold theories, and in parti cular relevant Donaldson-Thomas, Vafa-Witten and Seiberg-Witten theories.
We prove the equivariant Gromov-Witten theory of a nonsingular toric 3-fold X with primary insertions is equivalent to the equivariant Donaldson-Thomas theory of X. As a corollary, the topological vertex calculations by Agangic, Klemm, Marino, and Va fa of the Gromov-Witten theory of local Calabi-Yau toric 3-folds are proven to be correct in the full 3-leg setting.
141 - Kentaro Nagao 2010
We provide a transformation formula of non-commutative Donaldson-Thomas invariants under a composition of mutations. Consequently, we get a description of a composition of cluster transformations in terms of quiver Grassmannians. As an application, w e give an alternative proof of Fomin-Zelevinskys conjectures on $F$-polynomials and $g$-vectors.
Noether-Lefschetz divisors in the moduli of K3 surfaces are the loci corresponding to Picard rank at least 2. We relate the degrees of the Noether-Lefschetz divisors in 1-parameter families of K3 surfaces to the Gromov-Witten theory of the 3-fold tot al space. The reduced K3 theory and the Yau-Zaslow formula play an important role. We use results of Borcherds and Kudla-Millson for O(2,19) lattices to determine the Noether-Lefschetz degrees in classical families of K3 surfaces of degrees 2, 4, 6 and 8. For the quartic K3 surfaces, the Noether-Lefschetz degrees are proven to be the Fourier coefficients of an explicitly computed modular form of weight 21/2 and level 8. The interplay with mirror symmetry is discussed. We close with a conjecture on the Picard ranks of moduli spaces of K3 surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا