ترغب بنشر مسار تعليمي؟ اضغط هنا

Automorphism groups of Riemann surfaces of genus p+1, where p is prime

59   0   0.0 ( 0 )
 نشر من قبل Michael Belolipetsky
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that if $cal S$ is a compact Riemann surface of genus $g = p+1$, where $p$ is prime, with a group of automorphisms $G$ such that $|G|geqlambda(g-1)$ for some real number $lambda>6$, then for all sufficiently large $p$ (depending on $lambda$), $cal S$ and $G$ lie in one of six infinite sequences of examples. In particular, if $lambda=8$ then this holds for all $pgeq 17$ and we obtain the largest groups of automorphisms of Riemann surfaces of genenera $g=p+1$.



قيم البحث

اقرأ أيضاً

We classify compact Riemann surfaces of genus $g$, where $g-1$ is a prime $p$, which have a group of automorphisms of order $rho(g-1)$ for some integer $rhoge 1$, and determine isogeny decompositions of the corresponding Jacobian varieties. This exte nds results of Belolipetzky and the second author for $rho>6$, and of the first and third authors for $rho=3, 4, 5$ and $6$. As a corollary we classify the orientably regular hypermaps (including maps) of genus $p+1$, together with the non-orientable regular hypermaps of characteristic $-p$, with automorphism group of order divisible by the prime $p$; this extends results of Conder, v Sirav n and Tucker for maps.
We classify finite $p$-groups, upto isoclinism, which have only two conjugacy class sizes $1$ and $p^3$. It turns out that the nilpotency class of such groups is $2$.
This paper is a continuation of our article (European J. Math., https://doi.org/10.1007/s40879-020-00419-8). The notion of a poor complex compact manifold was introduced there and the group $Aut(X)$ for a $P^1$-bundle over such a manifold was proven to be very Jordan. We call a group $G$ very Jordan if it contains a normal abelian subgroup $G_0$ such that the orders of finite subgroups of the quotient $G/G_0$ are bounded by a constant depending on $G$ only. In this paper we provide explicit examples of infinite families of poor manifolds of any complex dimension, namely simple tori of algebraic dimension zero. Then we consider a non-trivial holomorphic $P^1$-bundle $(X,p,Y)$ over a non-uniruled complex compact Kaehler manifold $Y$. We prove that $Aut(X)$ is very Jordan provided some additional conditions on the set of sections of $p$ are met. Applications to $P^1$-bundles over non-algebraic complex tori are given.
Recent results of Qu and Tuarnauceanu describe explicitly the finite p-groups which are not elementary abelian and have the property that the number of their subgroups is maximal among p-groups of a given order. We complement these results from the b ottom level up by determining completely the non-cyclic finite p-groups whose number of subgroups among p-groups of a given order is minimal.
The superextension $lambda(X)$ of a set $X$ consists of all maximal linked families on $X$. Any associative binary operation $*: Xtimes X to X$ can be extended to an associative binary operation $*: lambda(X)timeslambda(X)tolambda(X)$. In the paper w e study isomorphisms of superextensions of groups and prove that two groups are isomorphic if and only if their superextensions are isomorphic. Also we describe the automorphism groups of superextensions of all groups of cardinality $leq 5$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا