ترغب بنشر مسار تعليمي؟ اضغط هنا

Formulas for the dimensions of some affine Deligne-Lusztig Varieties

77   0   0.0 ( 0 )
 نشر من قبل Daniel C. Reuman
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English
 تأليف Daniel C. Reuman




اسأل ChatGPT حول البحث

Rapoport and Kottwitz defined the affine Deligne-Lusztig varieties $X_{tilde{w}}^P(bsigma)$ of a quasisplit connected reductive group $G$ over $F = mathbb{F}_q((t))$ for a parahoric subgroup $P$. They asked which pairs $(b, tilde{w})$ give non-empty varieties, and in these cases what dimensions do these varieties have. This paper answers these questions for $P=I$ an Iwahori subgroup, in the cases $b=1$, $G=SL_2$, $SL_3$, $Sp_4$. This information is used to get a formula for the dimensions of the $X_{tilde{w}}^K(sigma)$ (all shown to be non-empty by Rapoport and Kottwitz) for the above $G$ that supports a general conjecture of Rapoport. Here $K$ is a special maximal compact subgroup.



قيم البحث

اقرأ أيضاً

This paper concerns the dimensions of certain affine Deligne-Lusztig varieties, both in the affine Grassmannian and in the affine flag manifold. Rapoport conjectured a formula for the dimensions of the varieties X_mu(b) in the affine Grassmannian. We prove his conjecture for b in the split torus; we find that these varieties are equidimensional; and we reduce the general conjecture to the case of superbasic b. In the affine flag manifold, we prove a formula that reduces the dimension question for X_x(b) with b in the split torus to computations of dimensions of intersections of Iwahori orbits with orbits of the unipotent radical. Calculations using this formula allow us to verify a conjecture of Reuman in many new cases, and to make progress toward a generalization of his conjecture.
This paper studies affine Deligne-Lusztig varieties in the affine flag manifold of a split group. Among other things, it proves emptiness for certain of these varieties, relates some of them to those for Levi subgroups, extends previous conjectures c oncerning their dimensions, and generalizes the superset method.
75 - Daniel C. Reuman 2002
Let F be a non-archimedean local field, let L be the maximal unramified extension of F, and let fr be the Frobenius automorphism. Let G be a split connected reductive group over F, and let B(1) be the Bruhat-Tits building associated to G(F). We know that fr acts on G(L) with fixed points G(F). Let I be the Iwahori associated to a chamber in B(1). We have the relative position map, inv, from G(L)/I x G(L)/I to the extended affine Weyl group, W_e of G. If w is in W_e and b is in G(L), then the affine Deligne-Lusztig set Xw(b fr) is {x in G(L)/I : inv(x,b fr(x)) = w}. This paper answers the question of which Xw(b fr) are non-empty for certain G and b.
235 - Ulrich Goertz 2008
We give a criterion which determines when a union of one-dimensional Deligne-Lusztig varieties has a connected closure. We also obtain a new, short proof of the connectedness criterion for Deligne-Lusztig varieties due to Lusztig.
We use geometry of the wonderful compactification to obtain a new proof of the relation between Deligne-Lusztig (or Alvis-Curtis) duality for $p$-adic groups and the homological duality. This provides a new way to introduce an involution on the set o f irreducible representations of the group which has been defined by A. Zelevinsky for $G=GL(n)$ by A.-M. Aubert in general (less direct geometric approaches to this duality have been developed earlier by Schneider-Stuhler and by the second author). As a byproduct we obtain a description of the Serre functor for representations of a p-adic group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا