ﻻ يوجد ملخص باللغة العربية
We derive asymptotic normality of kernel type deconvolution density estimators. In particular we consider deconvolution problems where the known component of the convolution has a symmetric lambda-stable distribution, 0<lambda<= 2. It turns out that the limit behavior changes if the exponent parameter lambda passes the value one, the case of Cauchy deconvolution.
We derive asymptotic normality of kernel type deconvolution estimators of the density, the distribution function at a fixed point, and of the probability of an interval. We consider the so called super smooth case where the characteristic function of
The paper discusses the estimation of a continuous density function of the target random field $X_{bf{i}}$, $bf{i}in mathbb {Z}^N$ which is contaminated by measurement errors. In particular, the observed random field $Y_{bf{i}}$, $bf{i}in mathbb {Z}^
We establish uniform-in-bandwidth consistency for kernel-type estimators of the differential entropy. We consider two kernel-type estimators of Shannons entropy. As a consequence, an asymptotic 100% confidence interval of entropy is provided.
We consider the nonparametric estimation of the density function of weakly and strongly dependent processes with noisy observations. We show that in the ordinary smooth case the optimal bandwidth choice can be influenced by long range dependence, as
In this paper, a novel Bayesian nonparametric test for assessing multivariate normal models is presented. While there are extensive frequentist and graphical methods for testing multivariate normality, it is challenging to find Bayesian counterparts.