ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic Normality of Nonparametric Kernel Type Deconvolution Density Estimators: crossing the Cauchy boundary

98   0   0.0 ( 0 )
 نشر من قبل A. J. van Es
 تاريخ النشر 2002
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive asymptotic normality of kernel type deconvolution density estimators. In particular we consider deconvolution problems where the known component of the convolution has a symmetric lambda-stable distribution, 0<lambda<= 2. It turns out that the limit behavior changes if the exponent parameter lambda passes the value one, the case of Cauchy deconvolution.



قيم البحث

اقرأ أيضاً

79 - A.J. van Es , H.-W. Uh 2001
We derive asymptotic normality of kernel type deconvolution estimators of the density, the distribution function at a fixed point, and of the probability of an interval. We consider the so called super smooth case where the characteristic function of the known distribution decreases exponentially. It turns out that the limit behavior of the pointwise estimators of the density and distribution function is relatively straightforward while the asymptotics of the estimator of the probability of an interval depends in a complicated way on the sequence of bandwidths.
370 - Jiexiang Li 2014
The paper discusses the estimation of a continuous density function of the target random field $X_{bf{i}}$, $bf{i}in mathbb {Z}^N$ which is contaminated by measurement errors. In particular, the observed random field $Y_{bf{i}}$, $bf{i}in mathbb {Z}^ N$ is such that $Y_{bf{i}}=X_{bf{i}}+epsilon_{bf{i}}$, where the random error $epsilon_{bf{i}}$ is from a known distribution and independent of the target random field. Compared to the existing results, the paper is improved in two directions. First, the random vectors in contrast to univariate random variables are investigated. Second, a random field with a certain spatial interactions instead of i. i. d. random variables is studied. Asymptotic normality of the proposed estimator is established under appropriate conditions.
139 - Salim Bouzebda 2011
We establish uniform-in-bandwidth consistency for kernel-type estimators of the differential entropy. We consider two kernel-type estimators of Shannons entropy. As a consequence, an asymptotic 100% confidence interval of entropy is provided.
168 - Rafa{l} Kulik 2008
We consider the nonparametric estimation of the density function of weakly and strongly dependent processes with noisy observations. We show that in the ordinary smooth case the optimal bandwidth choice can be influenced by long range dependence, as opposite to the standard case, when no noise is present. In particular, if the dependence is moderate the bandwidth, the rates of mean-square convergence and, additionally, central limit theorem are the same as in the i.i.d. case. If the dependence is strong enough, then the bandwidth choice is influenced by the strength of dependence, which is different when compared to the non-noisy case. Also, central limit theorem are influenced by the strength of dependence. On the other hand, if the density is supersmooth, then long range dependence has no effect at all on the optimal bandwidth choice.
In this paper, a novel Bayesian nonparametric test for assessing multivariate normal models is presented. While there are extensive frequentist and graphical methods for testing multivariate normality, it is challenging to find Bayesian counterparts. The proposed approach is based on the use of the Dirichlet process and Mahalanobis distance. More precisely, the Mahalanobis distance is employed as a good technique to transform the $m$-variate problem into a univariate problem. Then the Dirichlet process is used as a prior on the distribution of the Mahalanobis distance. The concentration of the distribution of the distance between the posterior process and the chi-square distribution with $m$ degrees of freedom is compared to the concentration of the distribution of the distance between the prior process and the chi-square distribution with $m$ degrees of freedom via a relative belief ratio. The distance between the Dirichlet process and the chi-square distribution is established based on the Anderson-Darling distance. Key theoretical results of the approach are derived. The procedure is illustrated through several examples, in which the proposed approach shows excellent performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا