ﻻ يوجد ملخص باللغة العربية
I introduce an innovative methodology for deriving numerical models of systems of partial differential equations which exhibit the evolution of spatial patterns. The new approach directly produces a discretisation for the evolution of the pattern amplitude, has the rigorous support of centre manifold theory at finite grid size $h$, and naturally incorporates physical boundaries. The results presented here for the Swift-Hohenberg equation suggest the approach will form a powerful method in computationally exploring pattern selection in general. With the aid of computer algebra, the techniques may be applied to a wide variety of equations to derive numerical models that accurately and stably capture the dynamics including the influence of possibly forced boundaries.
I argue that ``good mathematical models of spatio-temporal dynamics in two-dimensions require non-local operators in the nonlinear terms. Consequently, the often used Swift-Hohenberg equation requires modification as it is purely local. My aim here i
Axisymmetric and nonaxisymmetric patterns in the cubic-quintic Swift-Hohenberg equation posed on a disk with Neumann boundary conditions are studied via numerical continuation and bifurcation analysis. Axisymmetric localized solutions in the form of
A theoretical model for studying pattern formation in electroconvection is proposed in the form of a modified Swift-Hohenberg equation. A localized state is found in two dimension, in agreement with the experimentally observed ``worm state. The corre
We show that all meromorphic solutions of the stationary reduction of the real cubic Swift-Hohenberg equation are elliptic or degenerate elliptic. We then obtain them all explicitly by the subequation method, and one of them appears to be a new elliptic solution.
Network of packages with regulatory interactions (dependences and conflicts) from Debian GNU/Linux operating system is compiled and used as analogy of a gene regulatory network. Using a trace-back algorithm we assembly networks from the potential poo