ﻻ يوجد ملخص باللغة العربية
Let $k$ be a perfect field of characteristic $p>0$, $k(t)_{per}$ the perfect closure of $k(t)$ and $A$ a $k$-algebra. We characterize whether the ring $Aotimes_k k(t)_{per}$ is noetherian or not. As a consequence, we prove that the ring $Aotimes_k k(t)_{per}$ is noetherian when $A$ is the ring of formal power series in $n$ indeterminates over $k$.
In this paper we generalize the definition of rationalizability for square roots of polynomials introduced by M. Besier and the first author to field extensions. We then show that the rationalizability of a set of field extensions is equivalent to th
For a central perfect extension of groups $A rightarrowtail G twoheadrightarrow Q$, we study the maps $H_3(A,mathbb{Z}) to H_3(G, mathbb{Z})$ and $H_3(G, mathbb{Z}) to H_3(Q, mathbb{Z})$ provided that $Asubseteq G$. First we show that the image of $H
Extensions of dynamical-mean-field-theory (DMFT) make use of quantum impurity models as non-perturbative and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through the introduction of retarded inte
Our goal is to determine when the trivial extensions of commutative rings by modules are Cohen-Macaulay in the sense of Hamilton and Marley. For this purpose, we provide a generalization of the concept of Cohen-Macaulayness of rings to modules.
We study when $R to S$ has the property that prime ideals of $R$ extend to prime ideals or the unit ideal of $S$, and the situation where this property continues to hold after adjoining the same indeterminates to both rings. We prove that if $R$ is r