ترغب بنشر مسار تعليمي؟ اضغط هنا

Conservation of the noetherianity by perfect transcendental field extensions

81   0   0.0 ( 0 )
 نشر من قبل Luis Narvaez-Macarro
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $k$ be a perfect field of characteristic $p>0$, $k(t)_{per}$ the perfect closure of $k(t)$ and $A$ a $k$-algebra. We characterize whether the ring $Aotimes_k k(t)_{per}$ is noetherian or not. As a consequence, we prove that the ring $Aotimes_k k(t)_{per}$ is noetherian when $A$ is the ring of formal power series in $n$ indeterminates over $k$.



قيم البحث

اقرأ أيضاً

In this paper we generalize the definition of rationalizability for square roots of polynomials introduced by M. Besier and the first author to field extensions. We then show that the rationalizability of a set of field extensions is equivalent to th e rationalizability of the compositum of the field extensions, providing a new strategy to prove rationalizability of sets of square roots of polynomials.
For a central perfect extension of groups $A rightarrowtail G twoheadrightarrow Q$, we study the maps $H_3(A,mathbb{Z}) to H_3(G, mathbb{Z})$ and $H_3(G, mathbb{Z}) to H_3(Q, mathbb{Z})$ provided that $Asubseteq G$. First we show that the image of $H _3(A, mathbb{Z})to H_3(G, mathbb{Z})/rho_ast(Aotimes_mathbb{Z} H_2(G, mathbb{Z}))$ is $2$-torsion where $rho: A times G to G$ is the usual product map. When $BQ^+$ is an $H$-space, we also study the kernel of the surjective homomorphism $H_3(G, mathbb{Z}) to H_3(Q, mathbb{Z})$.
Extensions of dynamical-mean-field-theory (DMFT) make use of quantum impurity models as non-perturbative and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through the introduction of retarded inte ractions on the impurity, these approximations can be made two-particle self-consistent. This is of interest for the Hubbard model, because it allows to suppress the antiferromagnetic phase transition in two-dimensions in accordance with the Mermin-Wagner theorem, and to include the effects of bosonic fluctuations. For a physically sound description of the latter, the approximation should be conserving. In this paper we show that the mutual requirements of two-particle self-consistency and conservation lead to fundamental problems. For an approximation that is two-particle self-consistent in the charge- and longitudinal spin channel, the double occupancy of the lattice and the impurity are no longer consistent when computed from single-particle properties. For the case of self-consistency in the charge- and longitudinal as well as transversal spin channels, these requirements are even mutually exclusive so that no conserving approximation can exist. We illustrate these findings for a two-particle self-consistent and conserving DMFT approximation.
Our goal is to determine when the trivial extensions of commutative rings by modules are Cohen-Macaulay in the sense of Hamilton and Marley. For this purpose, we provide a generalization of the concept of Cohen-Macaulayness of rings to modules.
We study when $R to S$ has the property that prime ideals of $R$ extend to prime ideals or the unit ideal of $S$, and the situation where this property continues to hold after adjoining the same indeterminates to both rings. We prove that if $R$ is r educed, every maximal ideal of $R$ contains only finitely many minimal primes of $R$, and prime ideals of $R[X_1,dots,X_n]$ extend to prime ideals of $S[X_1,dots,X_n]$ for all $n$, then $S$ is flat over $R$. We give a counterexample to flatness over a reduced quasilocal ring $R$ with infinitely many minimal primes by constructing a non-flat $R$-module $M$ such that $M = PM$ for every minimal prime $P$ of $R$. We study the notion of intersection flatness and use it to prove that in certain graded cases it suffices to examine just one closed fiber to prove the stable prime extension property.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا