ﻻ يوجد ملخص باللغة العربية
The Navier-Stokes equation driven by heat conduction is studied. As a prototype we consider Rayleigh-Benard convection, in the Boussinesq approximation. Under a large aspect ratio assumption, which is the case in Rayleigh-Benard experiments with Prandtl number close to one, we prove the existence of a global strong solution to the 3D Navier-Stokes equation coupled with a heat equation, and the existence of a maximal B-attractor. A rigorous two-scale limit is obtained by homogenization theory. The mean velocity field is obtained by averaging the two-scale limit over the unit torus in the local variable.
The Rayleigh-Benard system with stress-free boundary conditions is shown to have a global attractor in each affine space where velocity has fixed spatial average. The physical problem is shown to be equivalent to one with periodic boundary conditions
This paper is concerned with the regularity theory of a transmission problem arising in composite materials. We give a new self-contained proof for the $C^{k,alpha}$ estimates on both sides of the interface under the minimal assumptions on the interf
This contribution is concerned with the effective viscosity problem, that is, the homogenization of the steady Stokes system with a random array of rigid particles, for which the main difficulty is the treatment of close particles. Standard approache
The technique of periodic homogenization with two-scale convergence is applied to the analysis of a two-phase Stefan-type problem that arises in the study of a periodic array of melting ice bars. For this reduced model we prove results on existence,
Motivated by the observation that electrons in graphene, in the hydrodynamic regime of transport, can be treated as a two-dimensional ultra-relativistic gas with very low shear viscosity, we examine the existence of the Rayleigh-Benard instability in