ﻻ يوجد ملخص باللغة العربية
The moduli space of stable bundles of rank 2 and degree 1 on a Riemann surface has rational cohomology generated by the so-called universal classes. The work of Baranovsky, King-Newstead, Siebert-Tian and Zagier provided a complete set of relations between these classes, expressed in terms of a recursion in the genus. This paper accomplishes the same thing for the non-compact moduli spaces of Higgs bundles, in the sense of Hitchin and Simpson. There are many more independent relations than for stable bundles, but in a sense the answer is simpler, since the formulas are completely explicit, not recursive. The results of Kirwan on equivariant cohomology for holomorphic circle actions are of key importance. Together, Parts I and II describe the cohomology rings of spaces of rank 2 Higgs bundles at essentially the same level of detail as is known for stable bundles.
The moduli space of stable vector bundles on a Riemann surface is smooth when the rank and degree are coprime, and is diffeomorphic to the space of unitary connections of central constant curvature. A classic result of Newstead and Atiyah-Bott assert
Let $C$ be a smooth projective curve of genus $2$. Following a method by O Grady, we construct a semismall desingularization $tilde{mathcal{M}}_{Dol}^G$ of the moduli space $mathcal{M}_{Dol}^G$ of semistable $G$-Higgs bundles of degree 0 for $G=GL(2,
For any two degrees coprime to the rank, we construct a family of ring isomorphisms parameterized by GSp(2g) between the cohomology of the moduli spaces of stable Higgs bundles which preserve the perverse filtrations. As consequences, we prove two st
We present a new family of monads whose cohomology is a stable rank two vector bundle on $mathbb{P}^3$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to constru
The moduli space of Higgs bundles has two stratifications. The Bialynicki-Birula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises from the Harder-Narasimhan