ﻻ يوجد ملخص باللغة العربية
A $p$-adic Schr{o}dinger-type operator $D^{alpha}+V_Y$ is studied. $D^{alpha}$ ($alpha>0$) is the operator of fractional differentiation and $V_Y=sum_{i,j=1}^nb_{ij}<delta_{x_j}, cdot>delta_{x_i}$ $(b_{ij}inmathbb{C})$ is a singular potential containing the Dirac delta functions $delta_{x}$ concentrated on points ${x_1,...,x_n}$ of the field of $p$-adic numbers $mathbb{Q}_p$. It is shown that such a problem is well-posed for $alpha>1/2$ and the singular perturbation $V_Y$ is form-bounded for $alpha>1$. In the latter case, the spectral analysis of $eta$-self-adjoint operator realizations of $D^{alpha}+V_Y$ in $L_2(mathbb{Q}_p)$ is carried out.
A number of papers over the past eight years have claimed to solve the fractional Schr{o}dinger equation for systems ranging from the one-dimensional infinite square well to the Coulomb potential to one-dimensional scattering with a rectangular barri
We consider the evolution of a quantum particle hopping on a cubic lattice in any dimension and subject to a potential consisting of a periodic part and a random part that fluctuates stochastically in time. If the random potential evolves according t
In this paper we consider $L^p$ boundedness of some commutators of Riesz transforms associated to Schr{o}dinger operator $P=-Delta+V(x)$ on $mathbb{R}^n, ngeq 3$. We assume that $V(x)$ is non-zero, nonnegative, and belongs to $B_q$ for some $q geq n/
We give necessary and sufficient conditions for the controllability of a Schrodinger equation involving the sub-Laplacian of a nilmanifold obtained by taking the quotient of a group of Heisenberg type by one of its discrete sub-groups.This class of n
In this survey paper, we report on recent works concerning exact observability (and, by duality, exact controllability) properties of subelliptic wave and Schr{o}dinger-type equations. These results illustrate the slowdown of propagation in direction