ﻻ يوجد ملخص باللغة العربية
For the nonlocal $T$-periodic Gross-Pitaevsky operator, formal solutions of the Floquet problem asymptotic in small parameter $hbar$, $hbarto0$, up to $O(hbar^{3/2})$ have been constructed. The quasi-energy spectral series found correspond to the closed phase trajectories of the Hamilton-Ehrenfest system which are stable in the linear approximation. The monodromy operator of this equation has been constructed to within $hat O(hbar^{3/2})$ in the class of trajectory-concentrated functions. The Aharonov-Anandan phases have been calculated for the quasi-energy states.
We study the time-dependent Gross-Pitaevskii equation describing Bose-Einstein condensation of trapped dipolar quantum gases. Existence and uniqueness as well as the possible blow-up of solutions are studied. Moreover, we discuss the problem of dimen
We present a method for calculating the Aharonov-Anandan phase for time-independent Hamiltonians that avoids the calculation of evolution operators. We compare the generic method used to calculate the Aharonov-Anandan phase with the method proposed h
We argue that a complete description of quantum annealing (QA) implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show
It is shown that the Confluent Heun Equation (CHEq) reduces for certain conditions of the parameters to a particular class of Quasi-Exactly Solvable models, associated with the Lie algebra $sl (2,{mathbb R})$. As a consequence it is possible to find
The quantum states which satisfy the equality in the generalised uncertainty relation are called intelligent states. We prove the existence of intelligent states for the Anandan-Aharonov uncertainty relation based on the geometry of the quantum state