ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hardy inequality in twisted waveguides

113   0   0.0 ( 0 )
 نشر من قبل David Krejcirik
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that twisting of an infinite straight three-dimensional tube with non-circular cross-section gives rise to a Hardy-type inequality for the associated Dirichlet Laplacian. As an application we prove certain stability of the spectrum of the Dirichlet Laplacian in locally and mildly bent tubes. Namely, it is known that any local bending, no matter how small, generates eigenvalues below the essential spectrum of the Laplacian in the tubes with arbitrary cross-sections rotated along a reference curve in an appropriate way. In the present paper we show that for any other rotation some critical strength of the bending is needed in order to induce a non-empty discrete spectrum.

قيم البحث

اقرأ أيضاً

We consider the Dirichlet Laplacian in a straight three dimensional waveguide with non-rotationally invariant cross section, perturbed by a twisting of small amplitude. It is well known that such a perturbation does not create eigenvalues below the e ssential spectrum. However, around the bottom of the spectrum, we provide a meromorphic extension of the weighted resolvent of the perturbed operator, and show the existence of exactly one resonance near this point. Moreover, we obtain the asymptotic behavior of this resonance as the size of the twisting goes to 0. We also extend the analysis to the upper eigenvalues of the transversal problem, showing that the number of resonances is bounded by the multiplicity of the eigenvalue and obtaining the corresponding asymptotic behavior
92 - H. Kovarik , A. Sacchetti 2007
In this paper we consider embedded eigenvalues of a Schroedinger Hamiltonian in a waveguide induced by a symmetric perturbation. It is shown that these eigenvalues become unstable and turn into resonances after twisting of the waveguide. The perturba tive expansion of the resonance width is calculated for weakly twisted waveguides and the influence of the twist on resonances in a concrete model is discussed in detail.
We consider two-dimensional Schroedinger operators with an attractive potential in the form of a channel of a fixed profile built along an unbounded curve composed of a circular arc and two straight semi-lines. Using a test-function argument with hel p of parallel coordinates outside the cut-locus of the curve, we establish the existence of discrete eigenvalues. This is a special variant of a recent result of Exner in a non-smooth case and via a different technique which does not require non-positive constraining potentials.
We consider a family of periodic tight-binding models (combinatorial graphs) that have the minimal number of links between copies of the fundamental domain. For this family we establish a local condition of second derivative type under which the crit ical points of the dispersion relation can be recognized as global maxima or minima. Under the additional assumption of time-reversal symmetry, we show that any local extremum of a dispersion band is in fact its global extremum if the dimension of the periodicity group is three or less, or (in any dimension) if the critical point in question is a symmetry point of the Floquet--Bloch family with respect to complex conjugation. We demonstrate that our results are nearly optimal with a number of examples.
We briefly review the diffraction of quasicrystals and then give an elementary alternative proof of the diffraction formula for regular cut-and-project sets, which is based on Bochners theorem from Fourier analysis. This clarifies a common view that the diffraction of a quasicrystal is determined by the diffraction of its underlying lattice. To illustrate our approach, we will also treat a number of well-known explicitly solvable examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا