ﻻ يوجد ملخص باللغة العربية
We show that twisting of an infinite straight three-dimensional tube with non-circular cross-section gives rise to a Hardy-type inequality for the associated Dirichlet Laplacian. As an application we prove certain stability of the spectrum of the Dirichlet Laplacian in locally and mildly bent tubes. Namely, it is known that any local bending, no matter how small, generates eigenvalues below the essential spectrum of the Laplacian in the tubes with arbitrary cross-sections rotated along a reference curve in an appropriate way. In the present paper we show that for any other rotation some critical strength of the bending is needed in order to induce a non-empty discrete spectrum.
We consider the Dirichlet Laplacian in a straight three dimensional waveguide with non-rotationally invariant cross section, perturbed by a twisting of small amplitude. It is well known that such a perturbation does not create eigenvalues below the e
In this paper we consider embedded eigenvalues of a Schroedinger Hamiltonian in a waveguide induced by a symmetric perturbation. It is shown that these eigenvalues become unstable and turn into resonances after twisting of the waveguide. The perturba
We consider two-dimensional Schroedinger operators with an attractive potential in the form of a channel of a fixed profile built along an unbounded curve composed of a circular arc and two straight semi-lines. Using a test-function argument with hel
We consider a family of periodic tight-binding models (combinatorial graphs) that have the minimal number of links between copies of the fundamental domain. For this family we establish a local condition of second derivative type under which the crit
We briefly review the diffraction of quasicrystals and then give an elementary alternative proof of the diffraction formula for regular cut-and-project sets, which is based on Bochners theorem from Fourier analysis. This clarifies a common view that