ترغب بنشر مسار تعليمي؟ اضغط هنا

On the stability of four legged tables

233   0   0.0 ( 0 )
 نشر من قبل Jens Vigen
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andre Martin




اسأل ChatGPT حول البحث

We prove that a perfect four-feet square table, posed in a continuous irregular ground with a local slope of at most 15 degrees can be put in equilibrium on the ground by a rotation of less than 90 degrees. We also discuss the case of non-square tables and make the conjecture that equilibrium can be found if the four feet are on a circle



قيم البحث

اقرأ أيضاً

We investigate the exact relation existing between the stability equation for the solutions of a mechanical system and the geodesic deviation equation of the associated geodesic problem in the Jacobi metric constructed via the Maupertuis-Jacobi Princ iple. We conclude that the dynamical and geometrical approaches to the stability/instability problem are not equivalent.
The main motivation of this article is to derive sufficient conditions for dynamical stability of periodically driven quantum systems described by a Hamiltonian H(t), i.e., conditions under which it holds sup_{t in R} | (psi(t),H(t) psi(t)) |<infty w here psi(t) denotes a trajectory at time t of the quantum system under consideration. We start from an analysis of the domain of the quasi-energy operator. Next we show, under certain assumptions, that if the spectrum of the monodromy operator U(T,0) is pure point then there exists a dense subspace of initial conditions for which the mean value of energy is uniformly bounded in the course of time. Further we show that if the propagator admits a differentiable Floquet decomposition then || H(t) psi(t) || is bounded in time for any initial condition psi(0), and one employs the quantum KAM algorithm to prove the existence of this type of decomposition for a fairly large class of H(t). In addition, we derive bounds uniform in time on transition probabilities between different energy levels, and we also propose an extension of this approach to the case of a higher order of differentiability of the Floquet decomposition. The procedure is demonstrated on a solvable example of the periodically time-dependent harmonic oscillator.
The Trotter-Suzuki decomposition is an important tool for the simulation and control of physical systems. We provide evidence for the stability of the Trotter-Suzuki decomposition. We model the error in the decomposition and determine sufficiency con ditions that guarantee the stability of this decomposition under this model. We relate these sufficiency conditions to precision limitations of computing and control in both classical and quantum cases. Furthermore we show that bounded-error Trotter-Suzuki decomposition can be achieved by a suitable choice of machine precision.
In this paper, we abstract a kind of stochastic processes from evolving processes of growing networks, this process is called growing network Markov chains. Thus the existence and the formulas of degree distribution are transformed to the correspondi ng problems of growing network Markov chains. First we investigate the growing network Markov chains, and obtain the condition in which the steady degree distribution exists and get its exact formulas. Then we apply it to various growing networks. With this method, we get a rigorous, exact and unified solution of the steady degree distribution for growing networks.
We consider a kinetic model for a system of two species of particles interacting through a longrange repulsive potential and a reservoir at given temperature. The model is described by a set of two coupled Vlasov-Fokker-Plank equations. The important front solution, which represents the phase boundary, is a one-dimensional stationary solution on the real line with given asymptotic values at infinity. We prove the asymptotic stability of the front for small symmetric perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا