ترغب بنشر مسار تعليمي؟ اضغط هنا

On Separation of Minimal Riesz Energy Points on Spheres in Euclidean Spaces

119   0   0.0 ( 0 )
 نشر من قبل Edward Saff
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For the unit sphere S^d in Euclidean space R^(d+1), we show that for d-1<s<d and any N>1, discrete N-point minimal Riesz s-energy configurations are well separated in the sense that the minimal distance between any pair of distinct points in such a configuration is bounded below by C/N^(1/d), where C is a positive constant depending on s and d.



قيم البحث

اقرأ أيضاً

97 - D. P. Hardin , E. B. Saff , 2011
For a closed subset $K$ of a compact metric space $A$ possessing an $alpha$-regular measure $mu$ with $mu(K)>0$, we prove that whenever $s>alpha$, any sequence of weighted minimal Riesz $s$-energy configurations $omega_N={x_{i,N}^{(s)}}_{i=1}^N$ on $ K$ (for `nice weights) is quasi-uniform in the sense that the ratios of its mesh norm to separation distance remain bounded as $N$ grows large. Furthermore, if $K$ is an $alpha$-rectifiable compact subset of Euclidean space ($alpha$ an integer) with positive and finite $alpha$-dimensional Hausdorff measure, it is possible to generate such a quasi-uniform sequence of configurations that also has (as $Nto infty$) a prescribed positive continuous limit distribution with respect to $alpha$-dimensional Hausdorff measure. As a consequence of our energy related results for the unweighted case, we deduce that if $A$ is a compact $C^1$ manifold without boundary, then there exists a sequence of $N$-point best-packing configurations on $A$ whose mesh-separation ratios have limit superior (as $Nto infty$) at most 2.
We prove a 2-terms Weyl formula for the counting function N(mu) of the spectrum of the Laplace operator in the Euclidean disk with a sharp remainder estimate O(mu^2/3).
We investigate the minimal Riesz s-energy problem for positive measures on the d-dimensional unit sphere S^d in the presence of an external field induced by a point charge, and more generally by a line charge. The model interaction is that of Riesz p otentials |x-y|^(-s) with d-2 <= s < d. For a given axis-supported external field, the support and the density of the corresponding extremal measure on S^d is determined. The special case s = d-2 yields interesting phenomena, which we investigate in detail. A weak* asymptotic analysis is provided as s goes to (d-2)^+.
76 - D.P. Hardin , E.B. Saff 2003
For a compact set A in Euclidean space we consider the asymptotic behavior of optimal (and near optimal) N-point configurations that minimize the Riesz s-energy (corresponding to the potential 1/t^s) over all N-point subsets of A, where s>0. For a la rge class of manifolds A having finite, positive d-dimensional Hausdorff measure, we show that such minimizing configurations have asymptotic limit distribution (as N tends to infinity with s fixed) equal to d-dimensional Hausdorff measure whenever s>d or s=d. In the latter case we obtain an explicit formula for the dominant term in the minimum energy. Our results are new even for the case of the d-dimensional sphere.
58 - P. Baird 1995
We construct large families of harmonic morphisms which are holomorphic with respect to Hermitian structures by finding heierarchies of Weierstrass-type representations. This enables us to find new examples of complex-valued harmonic morphisms from Euclidean spaces and spheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا