ﻻ يوجد ملخص باللغة العربية
In the classical Lagrangian approach to conservation laws of gauge-natural field theories a suitable (vector) density is known to generate the so--called {em conserved Noether currents}. It turns out that along any section of the relevant gauge--natural bundle this density is the divergence of a skew--symmetric (tensor) density, which is called a {em superpotential} for the conserved currents. We describe gauge--natural superpotentials in the framework of finite order variational sequences according to Krupka. We refer to previous results of ours on {em variational Lie derivatives} concerning abstra
When a gauge-natural invariant variational principle is assigned, to determine {em canonical} covariant conservation laws, the vertical part of gauge-natural lifts of infinitesimal principal automorphisms -- defining infinitesimal variations of secti
We consider the second variational derivative of a given gauge-natural invariant Lagrangian taken with respect to (prolongations of) vertical parts of gauge-natural lifts of infinitesimal principal automorphisms. By requiring such a second variationa
By resorting to Noethers Second Theorem, we relate the generalized Bianchi identities for Lagrangian field theories on gauge-natural bundles with the kernel of the associated gauge-natural Jacobi morphism. A suitable definition of the curvature of ga
Higgs fields on gauge-natural prolongations of principal bundles are defined by invariant variational problems and related canonical conservation laws along the kernel of a gauge-natural Jacobi morphism.
A reductive structure is associated here with Lagrangian canonically defined conserved quantities on gauge-natural bundles. Parametrized transformations defined by the gauge-natural lift of infinitesimal principal automorphisms induce a variational s