ﻻ يوجد ملخص باللغة العربية
We consider the resolvent of a system of first order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of $lambda$ which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding $zeta$ and $eta$-functions are also discussed.
We study the pole structure of the $zeta$-function associated to the Hamiltonian $H$ of a quantum mechanical particle living in the half-line $mathbf{R}^+$, subject to the singular potential $g x^{-2}+x^2$. We show that $H$ admits nontrivial self-adj
The asymptotic expansion of the heat-kernel for small values of its argument has been studied in many different cases and has been applied to 1-loop calculations in Quantum Field Theory. In this thesis we consider this asymptotic behavior for certain
We consider the resolvent of a second order differential operator with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents unusual powers of $lambd
One of the many problems to which J.S. Dowker devoted his attention is the effect of a conical singularity in the base manifold on the behavior of the quantum fields. In particular, he studied the small-$t$ asymptotic expansion of the heat-kernel tra
We get a generalization of Kreins formula -which relates the resolvents of different selfadjoint extensions of a differential operator with regular coefficients- to the non-regular case $A=-partial_x^2+( u^2-1/4)/x^2+V(x)$, where $0< u<1$ and $V(x)$