ﻻ يوجد ملخص باللغة العربية
A potential representation for the subset of traveling solutions of nonlinear dispersive evolution equations is introduced. The procedure involves a reduction of a third order partial differential equation to a first order ordinary differential equation. In this representation it can be shown that solitons and solutions with compact support only exist in systems with linear or quadratic dispersion, respectively. In particular, this article deals with so the called K(n,m) equations. It is shown that these equations can be classified according to a simple point transformation. As a result, all equations that allow for soliton solutions join the same equivalence class with the Korteweg-deVries equation being its representative.
This paper compares the results of applying a recently developed method of stochastic uncertainty quantification designed for fluid dynamics to the Born-Infeld model of nonlinear electromagnetism. The similarities in the results are striking. Namely,
We study admissible and equivalence point transformations between generalized multidimensional nonlinear Schrodinger equations and classify Lie symmetries of such equations. We begin with a wide superclass of Schrodinger-type equations, which include
Enhancing and essentially generalizing previous results on a class of (1+1)-dimensional nonlinear wave and elliptic equations, we apply several new techniques to classify admissible point transformations within this class up to the equivalence genera
We carry out the enhanced group classification of a class of (1+1)-dimensional nonlinear diffusion-reaction equations with gradient-dependent diffusivity using the two-step version of the method of furcate splitting. For simultaneously finding the eq
We discuss the classical statement of group classification problem and some its extensions in the general case. After that, we carry out the complete extended group classification for a class of (1+1)-dimensional nonlinear diffusion--convection equat