ترغب بنشر مسار تعليمي؟ اضغط هنا

An example of simple Lie superalgebra with several invariant bilinear forms

70   0   0.0 ( 0 )
 نشر من قبل Semyon Konstein
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.E.Konstein




اسأل ChatGPT حول البحث

The associative superalgebra A with two-dimensional space of supertraces is presented. It is shown that (i) it is simple, (ii) its commutant [A, A} is a simple Lie superalgebra and (iii) this commutant has at least 2-dimensional space of nondegenerate bilinear invariant forms.


قيم البحث

اقرأ أيضاً

We review the list of non-degenerate invariant (super)symmetric bilinear forms (briefly: NIS) on the following simple (relatives of) Lie (super)algebras: (a) with symmetrizable Cartan matrix of any growth, (b) with non-symmetrizable Cartan matrix of polynomial growth, (c) Lie (super)algebras of vector fields with polynomial coefficients, (d) stringy a.k.a. superconformal superalgebras, (e) queerifications of simple restricted Lie algebras. Over algebraically closed fields of positive characteristic, we establish when the deform (i.e., the result of deformation) of the known finite-dimensional simple Lie (super)algebra has a NIS. Amazingly, in most of the cases considered, if the Lie (super)algebra has a NIS, its deform has a NIS with the same Gram matrix after an identification of bases of the initial and deformed algebras. We do not consider odd parameters of deformations. Closely related with simple Lie (super)algebras with NIS is the notion of doubly extended Lie (super)algebras of which affine Kac--Moody (super)algebras are the most known examples.
As is well-known, the dimension of the space spanned by the non-degenerate invariant symmetric bilinear forms (NISes) on any simple finite-dimensional Lie algebra or Lie superalgebra is equal to at most 1 if the characteristic of the algebraically cl osed ground field is not 2. We prove that in characteristic 2, the superdimension of the space spanned by NISes can be equal to 0, or 1, or $0|1$, or $1|1$; it is equal to $1|1$ if and only if the Lie superalgebra is a queerification (defined in arXiv:1407.1695) of a simple classically restricted Lie algebra with a NIS (for examples, mainly in characteristic distinct from 2, see arXiv:1806.05505). We give examples of NISes on deformations (with both even and odd parameters) of several simple finite-dimensional Lie superalgebras in characteristic 2. We also recall examples of multiple NISes on simple Lie algebras over non-closed fields.
124 - A.P.Isaev , S.O.Krivonos 2021
We construct characteristic identities for the split (polarized) Casimir operators of the simple Lie algebras in defining (minimal fundamental) and adjoint representations. By means of these characteristic identities, for all simple Lie algebras we d erive explicit formulae for invariant projectors onto irreducible subrepresentations in T^{otimes 2} in two cases, when T is the defining and the adjoint representation. In the case when T is the defining representation, these projectors and the split Casimir operator are used to explicitly write down invariant solutions of the Yang-Baxter equations. In the case when T is the adjoint representation, these projectors and characteristic identities are considered from the viewpoint of the universal description of the simple Lie algebras in terms of the Vogel parameters.
Recursive algebraic construction of two infinite families of polynomials in $n$ variables is proposed as a uniform method applicable to every semisimple Lie group of rank $n$. Its result recognizes Chebyshev polynomials of the first and second kind a s the special case of the simple group of type $A_1$. The obtained not Laurent-type polynomials are proved to be equivalent to the partial cases of the Macdonald symmetric polynomials. Basic relation between the polynomials and their properties follow from the corresponding properties of the orbit functions, namely the orthogonality and discretization. Recurrence relations are shown for the Lie groups of types $A_1$, $A_2$, $A_3$, $C_2$, $C_3$, $G_2$, and $B_3$ together with lowest polynomials.
We present a study on the integral forms and their Cech/de Rham cohomology. We analyze the problem from a general perspective of sheaf theory and we explore examples in superprojective manifolds. Integral forms are fundamental in the theory of integr ation in supermanifolds. One can define the integral forms introducing a new sheaf containing, among other objects, the new basic forms delta(dtheta) where the symbol delta has the usual formal properties of Diracs delta distribution and acts on functions and forms as a Dirac measure. They satisfy in addition some new relations on the sheaf. It turns out that the enlarged sheaf of integral and ordinary superforms contains also forms of negative degree and, moreover, due to the additional relations introduced, its cohomology is, in a non trivial way, different from the usual superform cohomology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا