ﻻ يوجد ملخص باللغة العربية
We examine the Schrodinger algebra in the framework of Berezin quantization. First, the Heisenberg-Weyl and sl(2) algebras are studied. Then the Berezin representation of the Schrodinger algebra is computed. In fact, the sl(2) piece of the Schrodinger algebra can be decoupled from the Heisenberg component. This is accomplished using a special realization of the sl(2) component that is built from the Heisenberg piece as the quadratic elements in the Heisenberg-Weyl enveloping algebra. The structure of the Schrodinger algebra is revealed in a lucid way by the form of the Berezin representation.
We investigate the structure of the Schrodinger algebra and its representations in a Fock space realized in terms of canonical Appell systems. Generalized coherent states are used in the construction of a Hilbert space of functions on which certain c
Let K be a connected compact semisimple Lie group and Kc its complexification. The generalized Segal-Bargmann space for Kc, is a space of square-integrable holomorphic functions on Kc, with respect to a K-invariant heat kernel measure. This space is
The orbits of Weyl groups W(A(n)) of simple A(n) type Lie algebras are reduced to the union of orbits of the Weyl groups of maximal reductive subalgebras of A(n). Matrices transforming points of the orbits of W(An) into points of subalgebra orbits ar
It is shown that when the gauge-invariant Bohr-Rosenfeld commutators of the free electromagnetic field are applied to the expressions for the linear and angular momentum of the electromagnetic field interpreted as operators then, in the absence of el
We propose a generalization of quantization as a categorical way. For a fixed Poisson algebra quantization categories are defined as subcategories of R-module category with the structure of classical limits. We construct the generalized quantization