We discuss the asymptotic form of the static axially symmetric, globally regular and black hole solutions, obtained recently in Einstein-Yang-Mills and Einstein-Yang-Mills-dilaton theory.
We point out that the statements in [hep-th/9903063] concerning the regularity of static axially symmetric solutions in Yang-Mills-dilaton (YMD) [1] and Einstein-Yang-Mills(-dilaton) (EYMD) theory [2,3] are incorrect, and that the non-singular local
gauge potential of the YMD solutions [4] is twice differentiable.
In [hep-th/9907222] Hannibal claims to exclude the existence of particle-like static axially symmetric non-abelian solutions in SU(2) Einstein-Yang-Mills-dilaton theory. His argument is based on the asymptotic behaviour of such solutions. Here we dis
prove his claim by giving explicitly the asymptotic form of non-abelian solutions with winding number n=2.
We discuss generic properties of classical and quantum theories of gravity with a scalar field which are revealed at the vicinity of the cosmological singularity. When the potential of the scalar field is exponential and unbounded from below, the gen
eral solution of the Einstein equations has quasi-isotropic asymptotics near the singularity instead of the usual anisotropic Belinskii - Khalatnikov - Lifshitz (BKL) asymptotics. Depending on the strength of scalar field potential, there exist two phases of quantum gravity with scalar field: one with essentially anisotropic behavior of field correlation functions near the cosmological singularity, and another with quasi-isotropic behavior. The ``phase transition between the two phases is interpreted as the condensation of gravitons.
We compute the classical effective action of color charges moving along worldlines by integrating out the Yang-Mills gauge field to next-to-leading order in the coupling. An adapted version of the Bern-Carrasco-Johansson (BCJ) double-copy constructio
n known from quantum scattering amplitudes is then applied to the Feynman integrands, yielding the prediction for the classical effective action of point masses in dilaton gravity. We check the validity of the result by independently constructing the effective action in dilaton gravity employing field redefinitions and gauge choices that greatly simplify the perturbative construction. Complete agreement is found at next-to-leading order. Finally, upon performing the post-Newtonian expansion of our result, we find agreement with the corresponding action of scalar-tensor theories known from the literature. Our results represent a proof of concept for the classical double-copy construction of the gravitational effective action and provides another application of a BCJ-like double copy beyond scattering amplitudes.