ﻻ يوجد ملخص باللغة العربية
We discuss the spontaneous breakdown of chiral symmetry in Quantum Chromodynamics by considering gluonic instanton configurations in the partition function. It is shown that in order to obtain nontrivial fermionic correlators in a two dimensional gauge theory for the strong interactions among quarks, a regular instanton background has to be taken into account. We work over massless quarks in the -fundamental- representation of SU(N_c). For large N_c, massive quarks are also considered.
This is the second paper of the series aimed at understanding the ensemble of instanton-dyons, now with two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, $(det T)^{N_f}$ and Dirac eigenvalue spectra at
We study anomalous chiral symmetry breaking in two-flavour QCD induced by gravitational and QCD-instantons within asymptotically safe gravity within the functional renormalisation group approach. Similarly to QCD-instantons, gravitational ones, assoc
The effects of an external field on the dynamics of chiral symmetry breaking are studied using quenched, ladder QED as our model gauge field theory. It is found that a uniform external magnetic field enables the chiral symmetry to be spontaneously br
Superconformal indices of 4d N=1 SYM theories with SU(N) and SP(2N) gauge groups are investigated for N_f=N and N_f=N+1 flavors, respectively. These indices vanish for generic values of the flavor fugacities. However, for a singular submanifold of fu
We compare gap equation predictions for the spontaneous breaking of global symmetries in supersymmetric Yang-Mills theory to nonperturbative results from holomorphic effective action techniques. In the theory without matter fields, both approaches de