ﻻ يوجد ملخص باللغة العربية
We give a superfield formulation of the path integral on an arbitrary curved phase space, with or without first class constraints. Canonical tranformations and BRST transformations enter in a unified manner. The superpartners of the original phase space variables precisely conspire to produce the correct path integral measure, as Pfaffian ghosts. When extended to the case of second-class constraints, the correct path integral measure is again reproduced after integrating over the superpartners. These results suggest that the superfield formulation is of first-principle nature.
We propose how to incorporate the Leites-Shchepochkina-Konstein-Tyutin deformed antibracket into the quantum field-antifield formalism.
Using a regularised construction of the phase space path integral due to Ingrid Daubechies and John Klauder which involves a time scale ultimately taken to vanish, and motivated by the general programme towards a noncommutative space(time) geometry,
The canonical operator quantisation formulation corresponding to the Klauder-Daubechies construction of the phase space path integral is considered. This formulation is explicitly applied and solved in the case of the harmonic oscillator, thereby ill
In quantum field theory the path integral is usually formulated in the wave picture, i.e., as a sum over field evolutions. This path integral is difficult to define rigorously because of analytic problems whose resolution may ultimately require knowl
Action of 4 dimensional N=4 supersymmetric Yang-Mills theory is written by employing the superfields in N=4 superspace which were used to prove the equivalence of its constraint equations and equations of motion. Integral forms of the extended supers